

T. Y. B. Sc.
(Computer Science)

CS-348 Laboratory Course II
(Java Programming - II)

 (As per new syllabus w.e.f. academic year 2015-2016)

Semester II

Name ________________________________ Roll No. _______

College _______________________________ Division _______

Academic Year _____________

CO-ORDINATOR:
PROF. MS. POONAM PONDE
 NOWROSJEE WADIA COLLEGE, PUNE

EDITED BY :

Ms. Poonam Ponde

INPUTS GIVEN BY :
Mr. Jeevan Tonde
Ms. Rasika Rahalkar

PREVIOUS EDITION AUTHORS:

Ms. Poonam Ponde
Mr. Jeevan Limaye
Mr. Sachin Bhoite
Ms. Kalpana Joshi

ABOUT THE WORK BOOK

 OBJECTIVES OF THIS BOOK

This lab-book is intended to be used by T.Y.B.Sc(Computer Science) students
for Laboratory course – II (Java programming), Semester II.
The objectives of this book are

a. Covers the complete scope of the syllabus.
b. Bringing uniformity in the way course is conducted across different colleges.
c. Continuous assessment of the students.
d. Providing ready references for students while working in the lab.

 How to use this book?

This book is mandatory for the completion of the laboratory course. It is a
Measure of the performance of the student in the laboratory for the entire
Duration of the course.

 Instructions to the students

1. Students should carry this book during practical sessions.
2. Students should maintain a separate journal for the source code and outputs.
3. Student should read the topics mentioned in Reading section of this book

before coming for the practical session.

4. Students should solve those exercises which are selected by Practical in-
charge as a part of journal activity. However, students are free to solve
additional exercises for more practice.

5. Each assignment will be assessed on a scale of 0 to 5 as indicated below.
 i) Not done 0
 ii) Incomplete 1
 iii) Late Complete 2
 iv) Needs improvement 3
 v) Complete 4
 vi) Well Done 5

 Difficulty Levels

Self Activity : Students should solve these exercises for practice only.
SET A - Easy : All exercises are compulsory.
SET B - Medium : At least one exercise is mandatory.
SET C - Difficult : Not Compulsory.

 Instruction to the Instructors

1) Choose appropriate problems to be solved by student by ticking box �
2) Make sure that students follow the instruction as given above.
3) After a student completes a specific set, the instructor has to verify the outputs and sign
in the space provided after the activity.
4) Evaluate each assignment on a scale of 5 as specified above by ticking appropriate box.
5) The value should also be entered on assignment completion page of the respective Lab
course.

 Assignment Completion Sheet

Sr.
No

Assignment Name Marks

1 Collections

2 Database programming

3 Servlets

4 Java Server Pages

5 Multithreading

6 Networking

Total: _____ / 30

 Signature of Incharge:

Examiner I :

Examiner II :

Date:

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 1]

Assignment 1: Collections

Objectives

 Study the Collections framework in java
 Use various collections

Reading

You should read the following topics before starting this exercise:

1. Concept of Collection
2. classes and interfaces in the Collections framework
3. Concept of iterator.
4. Creating and using collections objects.

Ready Reference
A collection is an object that represents a group of objects. A collection — sometimes
called a container — is simply an object that groups multiple elements into a single unit.
Collections are used to store, retrieve, manipulate, and communicate aggregate data.
A collections framework is a unified architecture for representing and manipulating
collections, allowing them to be manipulated independently of the details of their
representation.

It contains the following:
i. Interfaces: Interfaces allow collections to be manipulated independently of the

details of their representation. Interfaces generally form a hierarchy.
ii. Implementations: These are the concrete implementations of the collection

interfaces.
iii. Algorithms: These are the methods that perform useful computations, such as

searching and sorting, on collection objects.
Collection

LinkedListArrayList Vector

List Set

HashSet LinkedHashSet TreeSet

SortedSet

Map

SortedMap

LinkedHashMap TreeSetHashTable HashMap
Interfaces:

Interface Name Description

Collection The most general collection interface type. A collection represents a
group of objects known as its elements. The Java platform doesn't
provide any direct implementations of this interface.

List Represents an ordered collection. Lists can contain duplicate
elements.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 2]

Set Represents an unordered collection that does not permit duplicate
elements.

SortedSet Represents a set whose elements are maintained in a sorted order.

Queue A collection used to hold multiple elements prior to processing.
A Queue provides additional insertion, extraction and inspection
operations.

Map Represents key-value pairs. A Map cannot contain duplicate keys;
each key can map to at most one value. Does not extend collection.

SortedMap Represents a Map that maintains its mappings in ascending key order.

Classes:

Class name Description

AbstractCollection Implements most of the Collection interface.

AbstractList

Extends AbstractCollection and implements most of the List
interface.

AbstractSequentialList

Extends AbstractList for use by a collection that uses
sequential rather than random access of its elements.

LinkedList Implements a linked list by extending AbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

AbstractSet

Extends AbstractCollection and implements most of the Set
interface.

HashSet Extends AbstractSet for use with a hash table.

TreeSet Implements a set stored in a tree. Extends AbstractSet

The Collection interface:
This interface represents a general collection.

Method Explanation

boolean add(Object element)

Method adds objects in the collection.

boolean remove(Object
element)

Method removes objects in the collection.

The Collection interface also supports query operations:

int size()

Returns the size of the collection.

boolean isEmpty()

Returns true if the collection is empty or false.

 boolean contains(Object
element)

Returns true if the collection contains the element passed in
argument.

Other operations are tasks done on groups of elements or the entire collection at once:

 boolean
containsAll(Collection
collection)

The containsAll() method allows you to discover if the current
collection contains all the elements of another collection, a subset.

boolean addAll(Collection
collection)

ensures all elements from another collection are added to the
current collection, usually a union.

void removeAll(Collection
collection)

method is like clear() but only removes a subset of elements

void retainAll(Collection
collection)

This method is similar to the removeAll() method but does what
might be perceived as the opposite: it removes from the current

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 3]

collection those elements not in the other collection, an
intersection.

 void clear()

removes all elements from the current collection

List interface
A list stores a sequence of elements.

Method Description

void add(int index,
Object element)

Inserts the specified element at the specified position in this
list (optional operation).

 Boolean
addAll(int index,
Collection c)

Inserts all of the elements in the specified collection into this
list at the specified position (optional operation).

 Object get(int index) Returns the element at the specified position in this list.
 int indexOf(Object o)

Returns the index in this list of the first occurrence of the
specified element, or -1 if this list does not contain this
element.

 int
lastIndexOf(Object o)

Returns the index in this list of the last occurrence of the
specified element, or -1 if this list does not contain this
element.

 ListIterator
listIterator()

Returns a list iterator of the elements in this list (in proper
sequence).

 ListIterator
listIterator(int index)

Returns a list iterator of the elements in this list (in proper
sequence), starting at the specified position in this list.

 Object
remove(int index)

Removes the element at the specified position in this list
(optional operation).

 Object set(int index,
Object element)

Replaces the element at the specified position in this list with
the specified element (optional operation).

 int size()

Returns the number of elements in this list.

 List
subList(int fromIndex,
int toIndex)

Returns a view of the portion of this list between the specified
fromIndex, inclusive, and toIndex, exclusive.

Set Interface and SortedSet Interface

A set is a collection that contains no duplicate elements. It contains the methods of the
Collection interface. A SortedSet is a Set that maintains its elements in ascending order.
It adds the following methods:

Method Description
Comparator comparator()

Returns the comparator associated with this
sorted set, or null if it uses its elements'
natural ordering.

Object first() Returns the first (lowest) element currently in
this sorted set.

SortedSet headset(Object
toElement)

Returns a view of the portion of this sorted set
whose elements are strictly less than
toElement.

Object last() Returns the last (highest) element currently in
this sorted set.

SortedSet subset(Object
fromElement, Object toElement)

Returns a view of the portion of this sorted set
whose elements range from fromElement,
inclusive, to toElement, exclusive.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 4]

SortedSet tailSet(Object
fromElement)

Returns a view of the portion of this sorted set
whose elements are greater than or equal to
fromElement.

Map Interface
A Map represents an object that maps keys to values. Keys have to be unique.

Method Description
void clear() Removes all mappings from this map
boolean
 containsKey(Object key)

Returns true if this map contains a mapping for
the specified key.

boolean
 containsValue(Object
value)

Returns true if this map maps one or more keys
to the specified value.

Set entrySet() Returns a set view of the mappings contained in
this map.

boolean equals(Object o) Compares the specified object with this map for
equality.

Object get(Object key) Returns the value to which this map maps the
specified key.

int hashCode() Returns the hash code value for this map.
boolean isEmpty() Returns true if this map contains no key-value

mappings
Set keySet() Returns a set view of the keys contained in this

map.
Object put(Object key,
Object value)

Associates the specified value with the specified
key in this map

void putAll(Map t) Copies all of the mappings from the specified
map to this map

Object remove(Object
key)

Removes the mapping for this key from this map
if it is present (optional operation).

int size() Returns the number of key-value mappings in this
map.

Collection values() Returns a collection view of the values contained
in this map

Implementations

The general-purpose implementations are summarized in the following table.

General-purpose Implementations

Interfaces Implementations

 Hash table Resizable array Tree Linked list Hash table + Linked list

Set HashSet TreeSet LinkedHashSet

List ArrayList LinkedList

Map HashMap TreeMap LinkedHashMap

List Implementations

There are two general-purpose List implementations — ArrayList and LinkedList.

1. ArrayList: Resizable-array implementation of the List interface. Implements all
optional list operations, and permits all elements, including null. Each
ArrayList instance has a capacity. The capacity is the size of the array used to

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 5]

store the elements in the list. It is always at least as large as the list size. As
elements are added to an ArrayList, its capacity grows automatically.

2. LinkedList: The LinkedList class implements the List interface. All of the
operations perform as could be expected for a doubly-linked list. Operations that
index into the list will traverse the list from the beginning or the end, whichever is
closer to the specified index.

ArrayList Method name Description

addAll(int index, Collection c)
Inserts all of the elements in the specified Collection into this list,
starting at the specified position.

ensureCapacity(int minCapacity)
Increases the capacity of this ArrayList instance, if necessary, to
ensure that it can hold at least the number of elements specified
by the minimum capacity argument.

removeRange(int fromIndex,
int toIndex)

Removes from this List all of the elements whose index is
between fromIndex, inclusive and toIndex, exclusive.

trimToSize()
Trims the capacity of this ArrayList instance to be the list's current
size.

LinkedList Method name Description

addFirst(Object o) Inserts the given element at the beginning of this list.

addLast(Object o) Appends the given element to the end of this list.

Object getFirst() Returns the first element in the list

Object getLast() Returns the last element in the list

Object removeFirst() Removes and returns the first element from this list.

Object removeLast() Removes and returns the last element from this list.

ListIterator
listIterator(int index)

 Returns a list-iterator of the elements in this list (in proper
sequence), starting at the specified position in the list.

Set Implementations
There are three general-purpose Set implementations — HashSet, TreeSet, and
LinkedHashSet.

1. TreeSet: The elements are internally stored in a search tree. It is useful when you
need to extract elements from a collection in a sorted manner.

2. HashSet: It creates a collection the uses a hash table for storage. The advantage
of HashSet is that it performs basic operations (add, remove, contains and size)
in constant time and is faster than TreeSet

3. LinkedHashSet: The only difference is that the LinkedHashSet maintains the
order of the items added to the Set, The elements are stored in a doubly linked list.

Iterator:
The Iterator interface provides methods using which we can traverse any collection. This
interface is implemented by all collection classes.

Methods:
hasNext() true if there is a next element in the collection.

next() Returns the next object.

remove() Removes the most recent element that was returned by next()

ListIterator

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 6]

ListIterator is implemented only by the classes that implement the List interface
(ArrayList, LinkedList, and Vector). ListIterator provides the following.

Forward iteration

hasNext() true if there is a next element in the collection.

next() Returns the next object.

Backward iteration

hasPrevious() true if there is a previous element.

previous() Returns the previous element.

Getting the index of an element

nextIndex() Returns index of element that would be returned by subsequent call to next().

previousIndex() Returns index of element that would be returned by subsequent call to previous().

Optional modification methods.

add(obj) Inserts obj in collection before the next element to be returned by next() and after
an element that would be returned by previous().

set() Replaces the most recent element that was returned by next or previous().

remove() Removes the most recent element that was returned by next() or previous().

 HashTable

This class implements a hashtable, which maps keys to values. It is similar to HashMap,
but is synchronized. The important methods of the HashTable class are:

Method name Description

void clear() Clears this hashtable so that it contains no keys.
boolean contains(Object
value) Tests if some key maps into the specified value in this hashtable.

boolean
containsKey(Object key) Tests if the specified object is a key in this hashtable.

containsValue(Object value) Returns true if this Hashtable maps one or more keys to this value.

Enumeration elements() Returns an enumeration of the values in this hashtable.

Set entrySet() Returns a Set view of the entries contained in this Hashtable.

Object get(Object key) Returns the value to which the specified key is mapped in this
hashtable.

int hashCode() Returns the hash code value for this Map as per the definition in the
Map interface.

Boolean isEmpty() Tests if this hashtable maps no keys to values.

Enumeration keys() Returns an enumeration of the keys in this hashtable.

Set keySet() Returns a Set view of the keys contained in this Hashtable.

Object put(Object key,
Object value) Maps the specified key to the specified value in this hashtable.

void putAll(Map m)
Copies all of the mappings from the specified Map to this Hashtable
These mappings will replace any mappings that this Hashtable had
for any of the keys currently in the specified Map.

void rehash() Increases the capacity of and internally reorganizes this hashtable,
in order to accommodate and access its entries more efficiently.

Object remove(Object key) Removes the key (and its corresponding value) from this hashtable.

int size() Returns the number of keys in this hashtable.

Collection values() Returns a Collection view of the values contained in this Hashtable.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 7]

For traversing a HashTable, use the Enumeration interface. The Enumeration interface
has two methods, hasMoreElements and nextElement which are same as the hasNext
and next methods of the Iterator interface.

Self Activity

1. Sample program
/* Program to demonstrate ArrayList and LinkedList */
import java.util.*;
class ArrayLinkedListDemo {

public static void main(String args[])
{

ArrayList al = new ArrayList();
LinkedList l1 = new LinkedList();
System.out.println("Initial size of al: " + al.size());
// add elements to the array list
al.add("A");
al.add("B");
al.add("C");
al.add(2, "AA");
System.out.println("Contents of al: " + al);

al.remove("B");
al.remove(1);
System.out.println("Contents of al: " + al);
 l1.add("A");
 l1.add("B");
 l1.add(new Integer(10));
 System.out.println("The contents of list is " + l1);
 l1.addFirst(“AA”);
 l1.addLast("c");
 l1.add(2,"D");
 l1.add(1,"E");
 l1.remove(3);
 System.out.println("The contents of list is " + l1);
 }
}

2. Sample program
/* Program to demonstrate iterator */
import java.util.*;
public class IteratorDemo
{
 public static void main(String[] args)
{
 ArrayList a1 = new ArrayList();

al.add("C"); al.add("A"); al.add("E"); al.add("B"); al.add("D"); al.add("F");
 Iterator itr = a1.iterator(); //obtain iterator
 while(itr.hasNext())
 {
 String elt = (String)itr.next();
 System.out.println("Element = " + elt);
 }

 LinkedList l = new LinkedList();
 l.add("A"); l.add("B"); l.add("C"); l.add("D");
 ListIterator litr = l.listIterator();
 while(litr.hasNext())
 {
 String elt = (String)litr.next();
 System.out.println(elt);
 }
 System.out.println("Traversing Backwards : ");
 while(litr.hasPrevious())
 System.out.println(litr.previous());
}
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 8]

3. Sample program
/* Program to demonstrate HashTable*/
import java.util.*;
public class HashtableDemo
{
 public static void main(String[] args)
{
 Hashtable hashtable = new Hashtable();
String str, name = null;
hashtable.put("A", 75.2); // adding value into hashtable
hashtable.put("B", 65.9);
hashtable.put("C", 95.1);
hashtable.put("D", 85.7);

System.out.println("Retriving all keys from the Hashtable");
Enumeration keys = hashtable.keys();
while(keys. hasMoreElements())
 System.out.println(keys.nextElement());

 System.out.println("Retriving all values from the table");
Enumeration values = hashtable.elements();
while(values. hasMoreElements())
 System.out.println(values.nextElement());
}
}

Lab Assignments

SET A

1. Accept ‘n’ integers from the user and store them in a collection. Display them in the
sorted order. The collection should not accept duplicate elements. (Use a suitable
collection). Search for an particular element using predefined search method in the
Collection framework.

2. Construct a linked List containing names of colors: red, blue, yellow and orange. Then

extend your program to do the following:
i. Display the contents of the List using an Iterator;
ii. Display the contents of the List in reverse order using a ListIterator;
iii. Create another list containing pink and green. Insert the elements of this list

between blue and yellow.

3. Create a Hash table containing student name and percentage. Display the details of the
hash table. Also search for a specific student and display percentage of that student.

SET B

1. Create a java application to store city names and their STD codes using an appropriate

collection. The GUI ahould allow the following operations:
 i. Add a new city and its code (No duplicates)
 ii. Remove a city from the collection
 iii. Search for a cityname and display the code

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 9]

SET C
1. Read a text file, specified by the first command line argument, into a list. The
program should then display a menu which performs the following operations on the list:
1. Insert line 2. Delete line 3. Append line 4. Modify line 5. Exit
When the user selects Exit, save the contents of the list to the file and end the program.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 10]

Assignment 2: Database Programming

Objectives

 To communicate with a database using java.
 To execute queries on tables.
 To obtain information about the database and tables

Reading

You should read the following topics before starting this exercise:

1. The JDBC driver types
2. The design of JDBC
3. Statement, PreparedStatement, ResultSet
4. DatabaseMetaData and ResultSetMetaData

Ready Reference

JDBC : Java Database Connectivity
This API contains of a set of classes and interfaces to enable programmers to
communicate with a database using java. These classes and interfaces are in the java.sql
package.
The JDBC API makes it possible to do three things:

i. Establish a connection with a data source.
ii. Send queries and update statements to the data source.
iii. Process the results.

The classes and interfaces in the java.sql package are given below.

Interface Name Description
Array Maps to the SQL type ARRAY
Blob Represents SQL BLOB Value
CallableStatement To execute SQL stored procedures.
Clob Represents SQL CLOB type
Connection Represents a connection session with the database
DatabaseMetaData Information about the database
Driver Interface that every driver class must implement
ParameterMetaData Information about parameters in PreparedStatement object
PreparedStatement Represents precompiled SQL statement
Ref Maps to SQL REF type
ResultSet Table of data generated by executing a database query
ResultSetMetaData Information about columns in a ResultSet
Savepoint The representation of a savepoint, which is a point within the current transaction.
SQLData For custom mapping of an SQL user-defined type (UDT) to a class in the Java

programming language.
SQLInput An input stream that contains a stream of values representing an instance of an

SQL structured type.
SQLOutput The output stream for writing the attributes of a user-defined type back to the

database.
Statement For executing a static SQL statement and returning the results it produces.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 11]

Struct Maps to an SQL structured type.

Class Name Description

Date Represents an SQL DATE value.

DriverManager The basic service for managing a set of JDBC drivers.

DriverPropertyInfo Driver properties for making a connection.

SQLPermission
The permission for which the SecurityManager will check when code that is
running in an applet calls the DriverManager.setLogWriter method or
the DriverManager.setLogStream (deprecated) method.

Time Represents an SQL TIME value.

Timestamp Represents an SQL TIMESTAMP value.

Types Defines constants that are used to identify generic SQL types, called JDBC types.

JDBC Drivers

To communicate with a database, you need a database driver. There are four types of
drivers:
1. Type 1: JDBC-ODBC Bridge driver
2. Type 2: Native-API partly-Java driver:
3. Type 3: JDBC-Net pure Java driver:
4. Type 4: Native-protocol pure Java driver:

For postgresql, use the driver:
org.postgresql.Driver

To load the driver, use the following command:

Class.forName(“driverName”);

Example:
Class.forName(“org.postgresql.Driver”);

Establishing a connection
To establish a connection with the database, use the getConnection method of the
DriverManager class. This method returns a Connection object.

DriverManager.getConnection(“url”, “user”, “password”);

Example:
Connection conn = DriverManager.getConnection
(“jdbc:postgresql://192.168.100.4/TestDB”, “scott”, “tiger”);

Methods of Connection class:

 void close() Releases this Connection object's database and JDBC resources
immediately instead of waiting for them to be automatically released.

 void commit() Makes all changes made since the previous commit/rollback permanent
and releases any database locks currently held by this Connection
object.

 Statement
createStatement()

Creates a Statement object for sending SQL statements to the database.

 Statement
createStatement(int Creates a Statement object that will generate ResultSet objects

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 12]

resultSetType,
int resultSetConcurr
ency)

with the given type and concurrency.

 Boolean
getAutoCommit() Retrieves the current auto-commit mode for this Connection object.

 DatabaseMetaData
getMetaData()

Retrieves a DatabaseMetaData object that contains metadata about
the database to which this Connection object represents a connection.

 CallableStatement
prepareCall(String s
ql)

Creates a CallableStatement object for calling database stored
procedures.

 CallableStatement
prepareCall(String s
ql,
int resultSetType,
int resultSetConcurr
ency)

Creates a CallableStatement object that will generate ResultSet
objects with the given type and concurrency.

 PreparedStatement
prepareStatement(Str
ing sql)

 Creates a PreparedStatement object for sending parameterized
SQL statements to the database.

 PreparedStatement
prepareStatement(Str
ing sql,
int resultSetType,
int resultSetConcurr
ency)

Creates a PreparedStatement object that will generate ResultSet
objects with the given type and concurrency.

 void rollback() Undoes all changes made in the current transaction and releases any
database locks currently held by this Connection object.

 void
setAutoCommit(boolea
n autoCommit)

 Sets this connection's auto-commit mode to the given state.

Executing Queries

To execute an SQL query, you have to use one of the following classes:
 Statement
 PreparedStatement
 CallableStatement

A Statement represents a general SQL statement without parameters. The method
createStatement() creates a Statement object. A PreparedStatement represents a
precompiled SQL statement, with or without parameters. The method
prepareStatement(String sql) creates a PreparedStatement object. CallableStatement
objects are used to execute SQL stored procedures. The method prepareCall(String sql)
creates a CallableStatement object.

Executing a SQL statement with the Statement object, and returning a jdbc
resultSet.

To execute a query, call an execute method from Statement such as the following:

 execute: Use this method if the query could return one or more ResultSet
objects.

 executeQuery: Returns one ResultSet object.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 13]

 executeUpdate: Returns an integer representing the number of rows affected by
the SQL statement. Use this method if you are using INSERT, DELETE, or UPDATE
SQL statements.

Examples:
ResultSet rs = stmt.executeQuery(“SELECT * FROM Student”);
int result = stmt.executeUpdate(“Update authors SET name = ‘abc’ WHERE id =
1”);
boolean ans = stmt.execute(“DROP TABLE IF EXISTS test”);

ResultSet provides access to a table of data generated by executing a Statement. The
table rows are retrieved in sequence. A ResultSet maintains a cursor pointing to its
current row of data. The next() method is used to successively step through the rows of
the tabular results.

Examples:
Statement stmt = conn.prepareStatement();
ResultSet rs = stmt.executeQuery(“Select * from student”);
while(rs.next())
{
 //access resultset data
}
To access these values, there are getXXX() methods where XXX is a type for example,
getString(), getInt() etc. There are two forms of the getXXX methods:
i. Using columnName: getXXX(String columnName)
ii. Using columnNumber: getXXX(int columnNumber)
Example

rs.getString(“stuname”));
rs.getString(1); //where name appears as column 1 in the ResultSet

Using PreparedStatement

These are precompiled sql statements. For parameters, the SQL commands in a
PreparedStatement can contain placeholders which are represented by ‘?’ in the SQL
command.
 Example
 String sql = “UPDATE authors SET name = ? WHERE id = ?”;
 PreparedStatement ps = conn.prepareStatement(sql);

Before the sql statement is executed, the placeholders have to be replaced by actual
values. This is done by calling a setXXX(int n, XXX x) method, where XXX is the
appropriate type for the parameter for example, setString, setInt, setFloat, setDate etc, n is
the placeholder number and x is the value which replaces the placeholder.

Example
String sql = “UPDATE authors SET name = ? WHERE id = ?”;
PreparedStatement ps = conn.prepareStatement(sql);
ps.setString(1,’abc’); //assign abc to first placeholder
ps.setInt(2,123); //assign 123 to second placeholder

ResultSet Scroll Types and Concurrency

The scroll type indicates how the cursor moves in the ResultSet. The concurrency type
affects concurrent access to the resultset. The types are given in the table below.

Scroll Type

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 14]

TYPE_FORWARD_ONLY The result set is not scrollable.
TYPE_SCROLL_INSENSITIVE The result set is scrollable but not sensitive to database

changes.
TYPE_SCROLL_SENSITIVE The result set is scrollable and sensitive to database

changes.

Concurrency Type
CONCUR_READ_ONLY The result set cannot be used to update the database.
CONCUR_UPDATABLE The result set can be used to update the database.

Example:
Statement stmt = conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet Interface

The ResultSet interface provides methods for retrieving and manipulating the results of
executed queries.

Method Name Description

beforeFirst() Default position. Puts cursor before 1st row of ResultSet.

first() Puts cursor on 1st row of ResultSet.
last() Puts cursor on last row of ResultSet.

afterLast() Puts cursor after/beyond last row of ResultSet.

absolute (int pos) Puts cursor at row number position where absolute (1) is a 1st row and
absolute (-1) is last row of ResultSet.

relative (int pos) Puts cursor at row no. position relative from current position.

next() To move to the next row in ResultSet

previous() To move to the previous row in ResultSet.

void close() To close the ResultSet.

deleteRow() Deletes the current row from the ResultSet and underlying database.

getRow() Retrieves the current row number

insertRow() Inserts the contents of the insert row into the ResultSet object and into
the database.

refreshRow() Refreshes the current row with its most recent value in the database.

updateRow() Updates the underlying database with the new contents of the current
row of this ResultSet object.

getXXX(String
columnName)

Retrieves the value of the designated column in the current row as a
corresponding type in the Java programming language. XXX
represents a type: Int, String, Float, Short, Long, Time etc.

moveToInsertRow() Moves the cursor to the insert row.

close() Disposes the ResultSet.

isFirst() Tests whether the cursor is at the first position.

isLast() Tests whether the cursor is at the last position

isBeforeFirst() Tests whether the cursor is before the first position

isAfterLast() Tests whether the cursor is after the last position

updateXXX(int
columnNumber, XXX
value)

Updates the value of the designated column in the current row as a
corresponding type in the Java programming language. XXX
represents a type: Int, String, Float, Short, Long, Time etc.

updateXXX(String
columnName, XXX
value)

Updates the value of the designated column in the current row as a
corresponding type in the Java programming language. XXX
represents a type: Int, String, Float, Short, Long, Time etc.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 15]

DatabaseMetaData

This interface provides methods that tell you about the database for a given connection
object.

Method Name Description

getDatabaseProductName() Retrieves the name of this database product.
getDatabaseProductVersion() Retrieves the version number of this database

product.
getDriverName() Retrieves the name of this JDBC driver.
getDriverVersion() Retrieves the version number of this JDBC driver as

a String.
getUserName() Retrieves the user name as known to this database.
getCatalogs() Retrieves the catalog names available in this

database.
getSchemas(String catalog, String
schemaPattern)

Retrieves the schema names available in this
database.

getTables(String catalog, String
schemaPattern, String
tableNamePattern, String[] types)

Retrieves a description of the tables available in the
given catalog.

getPrimaryKeys(String catalog, String
schema, String table)

Retrieves a description of the given table's primary
key columns.

getExportedKeys(String catalog,
String schema, String table)

Retrieves a description of the foreign key columns
that reference the given table's primary key
columns (the foreign keys exported by a table).

getImportedKeys(String catalog,
String schema, String table)

Retrieves a description of the primary key columns
that are referenced by a table's foreign key columns
(the primary keys imported by a table).

getColumns(String catalog, String
schemaPattern, String
tableNamePattern, String
columnNamePattern)

Retrieves a description of table columns available in
the specified catalog.

getProcedures(String catalog,
String schemaPattern,
String procedureNamePattern)

Retrieves a description of the stored procedures
available in the given catalog.

getFunctions(String catalog, String
schemaPattern, String
functionNamePattern)

Retrieves a description of the system and user
functions available in the given catalog.

Example:
DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getTables(null, null, null,new String[] {"TABLE"});
while (rs.next())
 System.out.println(rs.getString("TABLE_NAME"));

ResultSetMetaData

The ResultSetMetaData interface provides information about the structure of a particular
ResultSet.

Method Name Description

getColumnCount() Returns the number of columns in the current ResultSet
object.

getColumnDisplaySize(int column) Gives the maximum width of the column specified by the
index parameter.

getColumnLabel(int column) Gives the suggested title for the column for use in display
and printouts.

getColumnName(int column) Gives the column name associated with the column index.
getColumnTypeName(int column) Gives the designated column's SQL type.
isReadOnly(int column) Indicates whether the designated column is read-only.
isWritable(int column) Indicates whether you can write to the designated column.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 16]

isNullable(int column) Indicates the nullability of values in the designated
column.

Example:
ResultSet rs = stmt.executeQuery(query);
ResultSetMetaData rsmd = rs.getMetaData();
int noOfColumns = rsmd.getColumnCount();
System.out.println("Number of columns = " + noOfColumns);
for(int i=1; i<=noOfColumns; i++)
{
 System.out.println("Column No : " + i);
 System.out.println("Column Name : " + rsmd.getColumnName(i));
 System.out.println("Column Type : " + rsmd.getColumnTypeName(i));
 System.out.println("Column display size : " + rsmd.getColumnDisplaySize(i));
}

Self Activity

1. Sample program to display employee data (id, name, salary)
import java.sql.*;
import java.io.*;
class JDBCDemo
{
 public static void main(String[] args) throws SQLException
 {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 try
 {
 Class.forName("org.postgresql.Driver");
 conn =
DriverManager.getConnection("jdbc:postgresql://192.168.100.254/employeeDB","student","");
 if(conn==null)
 System.out.println("Connection failed ");
 else
 {
 System.out.println(“Connection successful..”);
 stmt = conn.createStatement();

rs = stmt.executeQuery("Select * from emp");
while(rs.next())
{
System.out.print("ID = " + rs.getInt(1));
System.out.println("Name = " + rs.getString(2));
System.out.println("Salary = " + rs.getInt(3));
}
conn.close();

}
}

 catch(Exception e)
 { System.out.println(e);}
 }
}// end of class

2. Sample program to perform insert and delete operations on employee table using
PreparedStatement (id, name, salary)
import java.sql.*;
import java.io.*;
class JDBCDemoOp
{
 public static void main(String[] args) throws SQLException
 {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
PreparedStatement ps1 = null, ps2=null;
int id, sal;
String name;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
Class.forName("org.postgresql.Driver");
conn =

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 17]

DriverManager.getConnection("jdbc:postgresql://192.168.100.254/employeeDB","student","");
stmt = conn.createStatement();
ps1 = conn.prepareStatement("Insert into employee values(?,?,?)");
ps2 = conn.prepareStatement("Delete employee where ID = ?");
if(conn!=null)

System.out.println("Connection successful..");
System.out.println("Enter the ID, name and salary to be inserted ");
id = Integer.parseInt(br.readLine());
name = br.readLine();
sal = Integer.parseInt(br.readLine());
ps1.setInt(1,id); ps1.setString(2,name);ps1.setInt(3,sal);
ps1.executeUpdate();

System.out.println("Enter the ID to be deleted ");
id = Integer.parseInt(br.readLine());
ps2.setInt(1,id);
ps2.executeUpdate();
conn.close();

 }
}// end of class

Lab Assignments

SET A

1. Create a student table with fields roll number, name, percentage. Insert values in the
table. Display all the details of the student table in a tabular format on the screen (using
swing).

2. Write a program to display information about the database and list all the tables in the
database. (Use DatabaseMetaData).

3. Write a program to display information about all columns in the student table. (Use
ResultSetMetaData).

SET B
1. Write a menu driven program (Command line interface) to perform the following
operations on student table.
 1. Insert 2. Modify 3. Delete 4. Search 5. View All 6. Exit

2. Design a following Phone Book Application Screen using swing & write a code for

various operations like Delete, Update, Next, Previous. Raise an appropriate
exception if invalid data is entered like name left blank and negative phone Number.

NAME

ADDRESS

PHONE

EMAIL

DELETE UPDATE<< >> EXIT

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 18]

SET C

1. Create tables : Course (id, name, instructor) and Student (id, name). Course and
Student have a many to many relationship. Create a GUI based system for performing the
following operations on the tables:

Course: Add Course, View All students of a specific course
Student: Add Student, Delete Student, View All students, Search student

2. Design a GUI to perform the following operations on Telephone user data.
i. Add record ii. Display current bill
Add record stores the details of a telephone user in a database. User has the following
attributes: User (id, name, telephone number, number of calls, month, year).
Display current bill should Calculate and display the bill for a specific user (search by
name or phone number) using the following rules. Provide button to Search user on basis
of telephone number or name.
Rules: The first 100 calls are free and rent is Rs. 300)

No. Of Calls Charge (per call)
> 100 and <=500 Rs. 1.00
> 500 Rs. 1.30

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 19]

Assignment 3: Servlets

Objectives

 To understand server-side programming
 Defining and executing servlets

Reading

You should read the following topics before starting this exercise:

1. Concept of servlet
2. Difference between applet and servlet
3. Introduction to Servlet (HTTP Servlet)
4. Lifecycle of a Servlet
5. Handling Get and Post requests (HTTP)
6. Data Handling using Servlet
7. Creating Cookies
8. Session Tracking using HTTP Servlet

Ready Reference

What are servlets?
Servlets are small programs that execute on the server side. Servlets are pieces of Java
source code that add functionality to a web server

Servlet provides full support for sessions, a way to keep track of a particular user over
time as a website’s pages are being viewed. They also can communicate directly with a
web server using a standard interface.

Servlets can be created using the javax.servlet and javax.servlet.http packages, which
are a standard part of the Java’s enterprise edition, an expanded version of the Java class
library that supports large-scale development projects.

Running servlets requires a server that supports the technologies. Several web servers,
each of which has its own installation, security and administration procedures, support
Servlets. The most popular one is the Tomcat- an open source server developed by the
Apache Software Foundation in cooperation with Sun Microsystems version 5.5 of
Tomcat supports Java Servlet.

Getting Tomcat
The software is available a a free download from Apache’s website at the address
http://jakarta.apache.org/tomcat. Several versions are available: Linux users should
download the rpm of Tomcat.

The javax.servlet package
The important interfaces and classes are described in the table below.

Interface Description

Servlet
A java servlet must implement the Servlet interface. This interface defines
methods to initialize a servlet, to service requests, and to remove a servlet
from the server. These are known as life-cycle methods.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 20]

ServletConfig
The ServletConfig interface is used by the server to pass configuration
information to a servlet. Its methods are used by the servlet to retrieve this
information.

ServletRequest
The ServletRequest interface encapsulates a client request for service. It
defines a number of methods for obtaining information about the server,
requester, and request.

ServletResponse The ServletResponse interface is used by a servlet to respond to a request
by sending information back to the client.

ServletContext
The ServletContext interface defines the environment in which an applet is
executed. It provides methods that are used by applets to access
environment information.

SingleThreadModel

The SingleThreadModel interface is used to identify servlets that must be
thread-safe. If a servlet implements this interface, the Web server will not
concurrently execute the service() method of more than one instance of the
servlet.

Class Description

GenericServlet The GenericServlet class implements the Servlet interface. You can subclass
this class to define your own servlets.

ServletInputStream
The ServletInputStream class is used to access request information supplied
by a Web client. An object of this class is returned by the getInputStream()
method of the ServletRequest interface.

ServletOutputStream
The ServletOutputStream class is used to send response information to a
Web client. An object of this class is returned by the getOutputStream()
method of the ServletResponse interface.

The javax.servlet.http package

Interface Description

HttpServletRequest The HttpServletRequest interface extends the ServletRequest interface and
adds methods for accessing the details of an HTTP request.

HttpServletResponse The HttpServletResponse interface extends the ServletResponse interface
and adds constants and methods for returning HTTP-specific responses.

HttpSession

This interface is implemented by servlets to enable them to support browser-
server sessions that span multiple HTTP request-response pairs. Since
HTTP is a stateless protocol, session state is maintained externally using
client-side cookies or URL rewriting. This interface provides methods for
reading and writing state values and managing sessions.

HttpSessionContext This interface is used to represent a collection of HttpSession objects that are
associated with session IDs.

Class Description

HttpServlet Used to create HTTP servlets. The HttpServlet class extends the
GenericServlet class.

Cookie

This class represents an HTTP cookie. Cookies are used to maintain session
state over multiple HTTP requests. They are named data values that are
created on the Web server and stored on individual browser clients. The
Cookie class provides the method for getting and setting cookie values and
attributes.

Servlet Life Cycle
A servlet’s life cycle methods function similarly to the life cycle methods of applets.

 The init(ServletConfig) method is called automatically when a web server first
begins a servlet to handle the user’s request. The init() method is called only once.
ServletConfig is an interface in the javax.servlet package, containing the methods
to find out more about the environment in which a servlet is running.

 The servlet action is in the service() method. The service() method checks the
HTTP request type (GET, POST, PUT, DELETE etc.) and calls doGet(), doPost(),

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 21]

doPut(), doDelete() etc. methods. A GET request results from normal request for a
URL or from an HTML form that has no METHOD specified. The POST request
results from an HTML form that specifically lists POST as the METHOD.

 The destroy() method is called when a web server takes a servlet offline.

Using Servlets
One of the main tasks of a servlet is to collect information from a web user and present
something back in response. Collection of information is achieved using form, which is a
group of text boxes, radio buttons, text areas, and other input fields on the web page. Each
field on a form stores information that can be transmitted to a web server and then sent to
a Java servlet. web browsers communicate with servers by using Hypertext Transfer
Protocol (HTTP).

 Form data can be sent to a server using two kinds of HTTP requests: get and post.
When web page calls a server using get or post, the name of the program that
handles the request must be specified as a web address, also called uniform
resource locator (URL). A get request affixes all data on a form to the end of a
URL. A post request includes form data as a header and sent separately from the
URL. This is generally preferred, and it’s required when confidential information
is being collected on the form.

 Java servlets handle both of these requests through methods inherited from the
HTTPServlet class: doGet(HttpServletRequest, HttpServletResponse) and
doPost(HttpServletRequest, HttpServletResponse). These methods throw two
kinds of exceptions: ServletException, part of javax.servlet package, and
IOException, an exception in the java.io package.

 The getparameter(String) method is used to retrieve the fields in a servlet with
the name of the field as an argument. Using an HTML document a servlet
communicates with the user.

 While preparing the response you have to define the kind of content the servlet is
sending to a browser. The setContentType(String) method is used to decide the
type of response servlet is communicating. Most common form of response is
written using an HTML as: setContentType(“text/html”).

 To send data to the browser, you create a servlet output stream associated with
the browser and then call the println(String) method on that stream. The
getWriter() method of HttpServletResponse object returns a stream. which can be
used to send a response back to the client.

Example

import java.io.*;
import javax.servlet.* ;
import javax.servlet.http.*;
public class MyHttpServlet extends HttpServlet
{
 public void doGet(HttpServletRequest req,HttpServletResponse res) throws
ServletException, IOException
{
 // Use “req” to read incoming request
 // Use “res” to specify the HTTP response status
 //Use req.getParameter(String) or getParameterValues(String) to obtain
parameters
 PrintWriter out = res.getWriter();//stream for output
 // Use "out" to send content to browser
 }
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 22]

Request and Response methods

ServletRequest methods

String
getParameter(String name
)

Obtains the value of a parameter sent to the servlet as part
of a get or post request.
The name argument represents the parameter name.

Enumeration
getParameterNames()

Returns the names of all the parameters sent to the servlet
as part of a post request.

String[]getParameterValu
es(String name)

For a parameter with multiple values, this method Returns
an array of strings containing the values for a specified
servlet parameter.

String getProtocol() Returns the name and version of the protocol the request
uses in the form protocol/majorVersion.minorVersion, for
example, HTTP/1.

String getRemoteAddr() Returns the Internet Protocol (IP) address of the client that
sent the request.

String getRemoteHost() Returns the fully qualified name of the client that sent the
request.

String getServerName() Returns the host name of the server that received the
request.

int getServerPort() Returns the port number on which this request was
received.

HttpServletRequest methods

Cookie[] getCookies() Returns an array of Cookie objects stored on the client by
the server.

HttpSession getSession(
boolean create)

Returns an HttpSession object associated with the
client's current browsing session. This method can create
an HttpSession object (True argument) if one does
not already exist for the client.

String getServletPath() Returns the part of this request's URL that calls the servlet.

String getMethod() Returns the name of the HTTP method with which this
request was made, for example, GET, POST, or PUT.

String getQueryString() Returns the query string that is contained in the request
URL after the path.

String getPathInfo() Returns any extra path information associated with the URL
the client sent when it made this request.

String getRemoteUser() Returns the login of the user making this request, if the user
has been authenticated, or null if the user has not been
authenticated.

ServletResponse methods
ServletOutputStream
getOutputStream()

Obtains a byte-based output stream for sending binary data
to the client.

PrintWriter getWriter() Obtains a character-based output stream for sending text
data (usually HTML formatted text) to the client.

void
setContentType(String
type)

Specifies the content type of the response to the browser.
The content type is also known as MIME (Multipurpose
Internet Mail Extension) type of the data. For examples,
"text/html" , "image/gif" etc.

String
setContentLength(int
len)

Sets the length of the content body in the response In
HTTP servlets, this method sets the HTTP Content-Length
header.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 23]

HttpServletResponse methods

void addCookie(Cookie
cookie)

Used to add a Cookie to the header of the response to
the client.

void sendError(int ec) Sends an error response to the client using the specified
status.

void sendError(int ec,
String messg)

Sends an error response to the client using the specified
status code and descriptive message.

void sendRedirect(Stirng
url)

Sends a temporary redirect response to the client using the
specified redirect location URL.

void setHeader(String
name, String value)

Sets a response header with the given name and value.

Writing, Compiling and Running Servlet
Type the first sample program of the self-activity section. After saving this
servlet,compile it with the Java compiler as: javac SimpleServlet.java. After compilation
a class file with name SimpleServlet.class is created.

To make the servlet available, you have to publish this class file in a folder on your web
server that has been designated for Java servlets. Tomcat provides the classes sub-folder
to deploy this servlet’s class file. Copy this class file in this classes sub-folder, which is
available on the path: tomcat/webapps/ WEB-INF/classes. Now edit the web.xml file
available under WEB-INF sub-folder with the following lines:

<servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <servlet-class>SimpleServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/SimpleServlet</url-pattern>
</servlet-mapping>

Repeat the above sequence of line to run every newly created servlet. Remember, these
line lines must be placed somewhere after the <web-app> tag and before the closing
</web-app> tag.

After adding these lines, save web.xml file. Restart the Tomcat service and run the servlet
by loading its address with a web browser as: http://localhost:8080/FirstServlet.

Using MySQL – Database Connectivity tool with servlets
Java’s Servlet also provides support for data handling using MySQL database. For this
you have to do few simple steps.
1. Copy the jar file mentioned in Database Connectivity assignment into the subfolder:

tomcat/lib/common.
2. Edit the file .bash_profile of your login using command: vi .bash_profile.
3. Add the following line without removing any line.

export CLASSPATH=$CLASSPATH:/$HOME/tomcat/common/lib/<jar file> used
in database connectivity assignment.
Example: if I have mysql-connector-java-5.1.6.jar file, I will type the line as
export CLASSPATH=$CLASSPATH:/$HOME/tomcat/common/lib/mysql-connector-
java-5.1.6.jar

4. Save this file. Logout from the terminal and re-login.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 24]

5. Create the table student(rno, sname) in your database. Insert few records into this
table.

Session Handling

1. Using cookies
2. Using HttpSession class

1. Using Cookies
To keep the track of information about you and the features you want the site to display.
This customization is possible because of a web browser features called cookies, small
files containing information that a website wants to remember about a user, like
username, number of visits, and other. The files are stored on the user’s computer, and a
website can read only the cookies on the user’s system that the site has created. The
default behavior of all the web browsers is to accept all cookies.

The javax.servlet.http.Cookie class allows us to create a cookie and send it to the
browser. The methods are:

Method Description

int getMaxAge()
Returns the maximum age of the cookie, specified in seconds, By
default, -1 indicating the cookie will persist until browser
shutdown.

String getName() Returns the name of the cookie.

String getValue() Returns the value of the cookie.

void setMaxAge(int
s) Sets the maximum age of the cookie in seconds.

void setValue
(String value) Assigns a new value to a cookie after the cookie is created.

 The Cookie class in the javax.servlet.http package supports cookies. To create a

cookie, call the Cookie(String,String) constructor. The first argument is the name
you want to give the Cookie, and the second is the cookie’s value.

 To send a cookie, call the addCookie(Cookie) method of an HttpServletResponse
object. You can add more than one cookie to a response.

 In a servlet,call the getCookies() method of an HttpServletRequest object to
receive an array of Cookie objects. Use getName() and getValue() methods to find
out about cookie.

2.HttpSession class

Servlet can retain the state of user through HttpSession, a class that represents sessions.
There can be one session object for each user running your servlet.

 A user’s session can be created or retrieved by calling the getSession(Boolean)
method of the servlet’s request object. Use an argument true if a session should be
created when one doesn’t already exist for the user.

Example: HttpSession state=req.getSession(true);

public void doGet (HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
{
 HttpSession session = req.getSession(true);
// ...
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 25]

 Objects held by session are called its attributes. Call the session’s
setAttribute(String, Object) method with two arguments: a name to give the
attribute and the object.

 To retrieve an attribute, call the getAttribute(String) method with its name as the
only argument. It returns the object, which must be cast from object to the desired
class, or null if no attribute of that name exists.

 To remove an attribute when it’s no longer needed, call removeAttribute(String)
with its name as the argument.

Method Description

Object getAttribute(String
name)

Returns the object bound with the specified name in this
session, or null if no object is bound under the name.

Enumeration
getAttributeNames()

Returns an Enumeration of String objects
containing the names of all the objects bound to this
session.

long getCreationTime()
Returns the time when this session was created,
measured in milliseconds since midnight January 1, 1970
GMT.

long getLastAccessedTime()

Returns the last time the client sent a request associated
with this session, as the number of milliseconds since
midnight January 1, 1970 GMT, and marked by the time
the container received the request.

int
getMaxInactiveInterval()

Returns the maximum time interval, in seconds, that the
servlet container will keep this session open between
client accesses.

void
RemoveAttribute(String
name)

Removes the object bound with the specified name from
this session.

void setAttribute(String
name, Object value) Binds an object to this session, using the name specified.

void
setMaxInactiveInterval(int
seconds)

Specifies the time, in seconds, between client requests
before the servlet container will invalidate this session.

void invalidate() Invalidates this session then unbinds any objects bound
to it.

Boolean isNew() Returns true if it is a new session.

String getId() Returns a string containing the unique identifier
assigned to this session.

Self Activity

1. Sample program
/* Program for simple servlet*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleServlet extends HttpServlet
{
 public void service(HttpServletRequest req, HttpServletResponse rs)
 throws ServletException, IOException
 {
 rs.setContentType("text/html");
 PrintWriter pw=rs.getWriter();
 pw.println("<html>");
 pw.println("<body>");
 pw.println("Hello, Welcome to Java Servlet’s");

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 26]

 pw.println("</body>");
 pw.println("</html>");
 pw.close();
 }
}

After saving this servlet, compile it with the Java compiler as: javac SimpleServlet.java.
Run the servlet using http://server-ip:8080/SimpleServlet

2. Sample program to read two numbers and return their sum
// Save the following code as Sum.html
<html>
<head>
<title></title>
</head>
<body>
<form method="post" action="http://server-ip:8080/AddServlet">
Enter the Number1 <input type="text" name="No1">
Enter the Number2 <input type="text" name="No2">

<input type="Submit">
</form>
</body>
</html>

// Save the following code as AddServlet.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AddServlet extends HttpServlet{
 public void doGet(HttpServletRequest req,HttpServletResponse
res)
 throws ServletException, IOException{

 int no1=Integer.parseInt(req.getParameter("No1"));
 int no2=Integer.parseInt(req.getParameter("No2"));
 int total=no1+no2;

 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 pw.println("<h1> ans </h1> <h3>"+total+"</h3>");
 pw.close();
 }
}

3. Sample program for database handling using servlet

//Create a student table (rno, name)
//The servlet displays all records from the student table on the client machine.
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class ServJdbc extends HttpServlet{

 String qry;
 ResultSet rs;
 Statement st;

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 27]

 Connection cn;
 String ename,sal;

 public void init()
 {
 try{
 Class.forName("org.gjt.mm.mysql.Driver");

 cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/root","root","");
 }
 catch(ClassNotFoundException ce){}
 catch(SQLException se){}

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
 {
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 try{

 qry="Select * from student";
 st=cn.createStatement();
 rs=st.executeQuery(qry);

 while(rs.next())
 {
 pw.print("<table border=1>");
 pw.print("<tr>");
 pw.print("<td>" + rs.getInt(1) + "</td>");
 pw.print("<td>" + rs.getString(2) + "</td>");
 pw.print("</tr>");
 pw.print("</table>");
 }
 }
 catch(Exception se){}
 pw.close();
 }
}

Run this program as http://server-ip:8080/ServJdbc

4. Sample program for cookies

/*Save this program as AddCookie.java
*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AddCookie extends HttpServlet{

 public void doGet(HttpServletRequest req,HttpServletResponse
res) throws ServletException, IOException{

 Cookie c1=new Cookie("Cookie1","1");
 res.addCookie(c1);
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 pw.print("Cookie added with value 1);

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 28]

 Cookie c2=new Cookie("Cookie2","2");
 res.addCookie(c2);
 pw.print("Cookie added with value 2);
 pw.close();
 }
}

/* Save this program as GetCookie.java */

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetCookie extends HttpServlet{

 public void doGet(HttpServletRequest req,HttpServletResponse
res) throws ServletException, IOException{

 Cookie [] c=req.getCookies();
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 for(int i=0;i<c.length;i++)
 pw.println("Cookie Name"+c[i].getName());
 pw.close();
 }
}
Run this program as http://server-ip:8080/AddCookie
Run this program as http://server-ip:8080/GetCookie
5. Sample program for sessions

/* Program for Session using Servlet
Save this program as SessionDemo.java
*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class SessionDemo extends HttpServlet{

 String result1="success";
 String result2="failure";
 public void doGet(HttpServletRequest req,HttpServletResponse
res)
 throws ServletException, IOException{

 HttpSession hs=req.getSession(true);

 String lname=req.getParameter("txt1");
 String pwd=req.getParameter("txt2");

 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();

 if((lname.equals("BCS"))&&(pwd.equals("CS")))
 {
 pw.print("
Login Success");
 hs.setAttribute("loginID",result1);

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 29]

 }
 else
 {
 pw.print("
Kick Out");
 hs.setAttribute("loginID",result2);
 }
 pw.close();
 }
}
<!—HTML File for NewInfo.html -->
<html>
<head>
<title></title>
</head>
<body>
<form method="post" action="http://localhost:8080/SessionInfo">
<input type="Submit" value=”Read Session Value”>
</form>
</body>
</html>

/*Save this program as SessionInfo.java */

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionInfo extends HttpServlet{
 String readloginid;
 public void doGet(HttpServletRequest req,HttpServletResponse
res) throws ServletException, IOException{

 HttpSession hs=req.getSession(true);
 readloginid=hs.getId();

 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();

 if(hs.getAttribute("loginID").equals("success"))
 pw.print("Your Session ID " + readloginid);
 else
 pw.print("<h1>Session Expired </h1>");
 pw.close();
 }
}

Create an html file for login and password and use http://server-ip:8080/SessionDemo in
the Form Action tag.

Lab Assignments

SET A

1. Design a servlet that provides information about a HTTP request from a client, such as
IP address and browser type. The servlet also provides information about the server on
which the servlet is running, such as the operating system type, and the names of
currently loaded servlets.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 30]

2. Write a servlet which counts how many times a user has visited a web page. If the user
is visiting the page for the first time, display a welcome message. If the user is re-visiting
the page, display the number of times visited. (Use cookies)

3. Design an HTML page which passes student roll number to a search servlet. The
servlet searches for the roll number in a database (student table) and returns student
details if found or error message otherwise.

SET B

1. Write a program to create a shopping mall. User must be allowed to do purchase from

two pages. Each page should have a page total. The third page should display a bill,
which consists of a page total of what ever the purchase has been done and print the
total. (Use HttpSession)

2. Design an HTML page containing 4 option buttons (Painting, Drawing, Singing
and swimming) and 2 buttons reset and submit. When the user clicks submit, the server
responds by adding a cookie containing the selected hobby and sends a message back to
the client. Program should not allow duplicate cookies to be written.

Set B: Additional Programs For Practice

1. Design the table Login(login_name, password) using MySQL. Also design an
HTML login screen. Accept the login name and password from the user. The
servlet accepts the login name and password and validates it from the database
you have created. The servlet sends back an appropriate response. Also calculate
the number of time that user has successfully performed the login activity. Use
cookies.

SET C

1. Consider the following entities and their relationships

Movie (movie_no, movie_name, release_year)
Actor(actor_no, name)
Relationship between movie and actor is many – many with attribute rate in Rs.
Create a RDB in 3 NF answer the following:
a) Accept an actor name and display all movie names in which he has acted along

with his name on top.
b) Accept a movie name and list all actors in that movie along with the movie name

on top.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 31]

Assignment 4: Java Server Pages

Objectives

 To demonstrate the use of JSP

Reading

You should read the following topics before starting this exercise

1. Concept of Servlets.
2. JSP life-cycle.
3. JSP Directives
4. Scripting elements.
5. Actions in JSP.

Ready Reference

 What is JSP?
JSP is Java Server Page, which is a dynamic web page and used to build dynamic
websites. To run jsp, we need web server which can be tomcat provided by apache, it can
also be jRun, jBoss(Redhat), weblogic (BEA) , or websphere(IBM).

 JSP is dynamic file whereas Html file is static. HTML can not get data from database or
dynamic data. JSP can be interactive and communicate with database and controllable by
programmer. It is saved by extension of .jsp. Each Java server page is compiled into a
servlet before it can be used. This is normally done when the first request to the JSP page
is made.

A JSP contains 3 important types of elements:-

1. Directives:- these are messages to the JSP container that is the server program that
executes JSPs.

2. Scripting elements:- These enables programmers to insert java code which will be a
part of the resultant servlet.

3. Actions:- Actions encapsulates functionally in predefined tags that programmers can
embedded in a JSP.

JSP Directives:-
Directives are message to the JSP container that enable the programmer to specify page setting to
include content from other resources & to specify custom tag libraries for use in a JSP.
Syntax:-

<%@ name attribute1=”….”, attribute2=”…”…%>

Directive Description

page Defines page settings for the JSP container to process.

include Causes the JSP container to perform a translation-time insertion of another resource's content. The file
included can be either static (HTML file) or dynamic (i.e., another tag file)

taglib Allows programmers to use new tags from tag libraries that encapsulate more complex functionality and
simplify the coding of a JSP.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 32]

Page Directive:-
The page directives specify global settings for the JSP in the JSP container. There can be many
page directives, provided that there is only one occurrence of each attribute.

Syntax:-
<%@ page
 [language="java"]
 [extends="package.class"]
 [import="{package.class | package.*}, ..."]
 [session="true|false"]
 [buffer="none|8kb|sizekb"]
 [autoFlush="true|false"]
 [isThreadSafe="true|false"]
 [info="text"]
 [errorPage="relativeURL"]
 [contentType="mimeType [; charset=characterSet]" |
 "text/html ; charset=ISO-8859-1"]
 [isErrorPage="true|false"]
 [pageEncoding="characterSet | ISO-8859-1"] %>

Scripting Elements

1. Declarations

A declaration declares one or more variables or methods that you can use in Java code
later in the JSP file.
Syntax
<%! Java declaration statements %>

Example,
<%! private int count = 0; %>
<%! int i = 0; %>

2. Expressions
An expression element contains a java expression that is evaluated, converted to a
String, and inserted where the expression appears in the JSP file.
Syntax
<%= expression %>

Example,
Your name is <%= request.getParameter("name") %>

3. Scriptlet
A scriptlet contains a set of java statements which is executed. A scriptlet can have java
variable and method declarations, expressions, use implicit objects and contain any other
statement valid in java.
Syntax
<% statements %>

Example
<%
 String name = request.getParameter("userName");
 out.println(“Hello “ + name);
%>

Implicit objects used in JSP

Implicit
object

Description

applicat
ion

A javax.servlet.ServletContext object that represents the container in which the JSP executes.
It allows sharing information between the jsp page's servlet and any web components with in

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 33]

the same application.

config
A javax.servlet.ServletConfig object that represents the JSP configuration options. As with
servlets, configuration options can be specified in a Web application descriptor (web.xml). The
method getinitparameter() is used to access the initialization parameters.

exceptio
n

A java.lang.Throwable object that represents an exception that is passed to a JSP error page.
This object is available only in a JSP error page.

out
A javax.servlet.jsp.JspWriter object that writes text as part of the response to a request. This
object is used implicitly with JSP expressions and actions that insert string content in a
response.

page An Object that represents the current JSP instance.

pageCont
ext

A javax.servlet.jsp.PageContext object that provides JSP programmers with access to the
implicit objects discussed in this table.

request

An object that represents the client request and is normally an instance of a class that
implements HttpServletRequest. If a protocol other than HTTP is used, this object is an
instance of a subclass of javax.servlet.Servlet-Request. It uses the getParameter() method to
access the request parameter.

response
An object that represents the response to the client and is normally an instance of a class that
implements HttpServletResponse (package javax.servlet.http). If a protocol other than HTTP is
used, this object is an instance of a class that implements javax.servlet.ServletResponse.

session A javax.servlet.http.HttpSession object that represents the client session information. This
object is available only in pages that participate in a session.

To run JSP files: all JSP code should be copied (Deployed) into webapps folder in the
tomcat server. To execute the file, type: http://server-ip:8080/Filename.jsp

Self Activity

1. Sample program : Simple display on browser

/* type this as first.jsp */
<html> <body>
<%
out.print("Hello World!");
%>
</body> </html>

2. Sample program to display current date
<%@ page language="java" import="java.util.*" %>
<html> <body>
Current Date time: <%=new java.util.Date()%>
</body> </html>

3. Sample program to add two numbers “AddNumbers.jsp”
<%@ page language="java"%>
<html> <head>
<title>Add number program in JSP</title>
</head>
<body>
<form method = “post” action = “AddNumbers.jsp”>
Enter Number 1 <input type =”text” name = “No1”>
Enter Number 2 <input type =”text” name = “No2”>
<input type="submit" value="Get Result"/>
<%
 int a=Integer.parseInt(request.getParameter(“No1”));
 int b=Integer.parseInt(request.getParameter(“No2”));
 int result=a+b;
 out.print("Additon of a and b :"+result);
%>

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 34]

</form> </body> </html>

Lab Assignments

SET A
 1. Write a Program to make use of following JSP implicit objects:

i. out: To display current Date and Time.
ii. request: To get header information.

iii. response: To Add Cookie
iv. config: get the parameters value defined in <init-param>
v. application: get the parameter value defined in <context-param>

vi. session: Display Current Session ID
vii. pageContext: To set and get the attributes.

viii. page: get the name of Generated Servlet

2. Create a JSP page which will accept the file extension and display all files in the
current directory having that extension. Each filename should appear as a hyperlink on
screen.

SET B
 1. Create a JSP page, which accepts user name in a text box and greets the user
according to the time on server side. Example: User name : ABC
Output : Good morning ABC / Good Afternoon ABC/ Good Evening ABC

2. Create a JSP page for an online multiple choice test. The questions are randomly
selected from a database and displayed on the screen. The choices are displayed using
radio buttons. When the user clicks on next, the next question is displayed. When the user
clicks on submit, display the total score on the screen.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 35]

Assignment 5: Multithreading

Objectives

 To create and use threads in java
 To demonstrate multithreading

Reading

You should read the following topics before starting this exercise:
1. Thread class
2. Runnable interface
3. Thread lifecycle
4. Thread methods

Ready Reference

Introduction

Nearly every operating system supports the concept of processes -- independently running
programs that are isolated from each other to some degree. Threading is a facility to allow
multiple activities to coexist within a single process. Java is the first mainstream
programming language to explicitly include threading within the language itself.

A process can support multiple threads, which appear to execute simultaneously and
asynchronously to each other. Multiple threads within a process share the same memory
address space, which means they have access to the same variables and objects, and they
allocate objects from the same heap.

Every Java program uses threads:-
Every Java program has at least one thread -- the main thread. When a Java program
starts, the JVM creates the main thread and calls the program's main() method within that
thread. The JVM also creates other threads that are mostly invisible to you -- for example,
threads associated with garbage collection, object finalization, and other JVM
housekeeping tasks. Other facilities create threads too, such as the AWT or Swing UI
toolkits, servlet containers, application servers, and RMI (Remote Method Invocation).

Thread Lifecycle:

The lifecycle of thread consist of several states which thread can be in. Each thread is in
one state at any given point of time.
1. New State: - Thread object was just created. It is in this state before the start ()

method is invoked. At this point the thread is considered not alive.
2. Runnable or ready state:- A thread starts its life from Runnable state. It enters this

state the time start() is called but it can enter this state several times later. In this state,
a thread is ready to run as soon as it gets CPU time.

3. Running State:- In this state, a thread is assigned a processor and is running. The
thread enters this state only after it is in the Runnable state and the scheduler assigns a
processor to the thread.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 36]

4. Sleeping state: - When the sleep method is invoked on a running thread, it enters the
Sleeping state.

5. Waiting State:- A thread enters the waiting state when the wait method is invoked on
the thread. When some other thread issues a notify () or notifyAll (), it returns to the
Runnable state().

6. Blocked State: - A thread can enter this state because it is waiting for resources that
are held by another thread – typically I/O resources.

7. Dead State:- This is the last state of a thread. When the thread has completed
execution that is its run () method ends, the thread is terminated. Once terminated, a
thread can’t be resumed.

Thread Creation
There are two ways to create thread in java;
1. Implement the Runnable interface (java.lang.Runnable)
2. By Extending the Thread class (java.lang.Thread)

1. Implementing the Runnable Interface

One way to create a thread in java is to implement the Runnable Interface and then
instantiate an object of the class. We need to override the run() method into our class
which is the only method that needs to be implemented. The run() method contains the
logic of the thread.

The procedure for creating threads based on the Runnable interface is as follows:
1. A class implements the Runnable interface, providing the run() method that will be
executed by the thread. An object of this class is a Runnable object.
2. An object of Thread class is created by passing a Runnable object as argument to the
Thread constructor. The Thread object now has a Runnable object that implements the
run() method.
3. The start() method is invoked on the Thread object created in the previous step. The
start() method returns immediately after a thread has been spawned.
4. The thread ends when the run() method ends, either by normal completion or by
throwing an uncaught exception.

Example:

class MyRunnable implements Runnable
{
 public void run() //define run method
 {
 //thread action
 }
}
...
MyRunnable r = new MyRunnable(); //create object
Thread t = new Thread(r); //create Thread object
t.start(); //execute thread

2. Extending java.lang.Thread class

A class can also extend the Thread class to create a thread. When we extend the Thread
class, we should override the run method to specify the thread action.

class MyThread extends Thread

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 37]

{
 public void run() //override run method
 {
 //thread action
 }
}
...
MyThread t = new MyThread(); //create Thread object
t.start(); //execute thread

Important methods of the Thread class:

Method Description

static int activeCount() Returns the number of active threads in the current
thread's thread group.

static Thread
currentThread()

Returns a reference to the currently executing thread
object.

String getName() Returns this thread's name.

int getPriority() Returns this thread's priority.
ThreadGroup getThreadGroup() Returns the thread group to which this thread belongs.

void interrupt() Interrupts this thread.

boolean isAlive() Tests if this thread is alive.

boolean isDaemon() Tests if this thread is a daemon thread.

boolean isInterrupted() Tests whether this thread has been interrupted.

void join() Waits for this thread to end.

void setName(String name) Changes the name of this thread.
void setPriority(int
newPriority) Changes the priority of this thread.

void sleep(long mSec) Causes the currently executing thread to sleep.

void start() Causes this thread to begin execution.

String toString() Returns a string representation of this thread, including
the thread's name, priority, and thread group.

static void yield() Causes the currently executing thread object to
temporarily pause and allow other threads to execute.

Thread priorities
Every thread has a priority. A priority is an integer from 1 to 10 inclusive, where 10 is the
highest priority, referred to as the maximum priority, and 1 is the lowest priority, also
known as the minimum priority. The normal priority is 5, which is the default priority for
each thread.

To set a thread’s priority, use the setPriority() method. You can use an integer from 1 to
10, or you can use static, final variables defined in the Thread class. These variables are
i. Thread.MIN_PRIORITY: Minimum priority i.e. 1
ii. Thread.MAX_PRIORITY: Maximum priority i.e. 10
iii. Thread.NORM_PRIORITY: Default priority i.e. 5

Interthread Communication
When multiple threads are running, it becomes necessary for the threads to communicate
with each other. The methods used for inter-thread communication are join(), wait(),
notify() and notifyAll().

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 38]

Self Activity
1. Below is a program that illustrates instantiation and running of threads using the
Runnable interface.

class RunnableThread implements Runnable {
 Thread runner;
 public RunnableThread() {
 }
 public RunnableThread(String threadName) {
 runner = new Thread(this, threadName); // (1) Create a new
thread.
 System.out.println(runner.getName());
 runner.start(); // (2) Start the thread.
 }
 public void run() {
 //Display info about this particular thread
 System.out.println(Thread.currentThread());
 }
}

public class RunnableExample {
 public static void main(String[] args) {
 Thread thread1 = new Thread(new RunnableThread(), "thread1");
 Thread thread2 = new Thread(new RunnableThread(), "thread2");
 RunnableThread thread3 = new RunnableThread("thread3");
 //Start the threads
 thread1.start();
 thread2.start();
 try {
 //delay for one second
 Thread.currentThread().sleep(1000);
 } catch (InterruptedException e) {
 }
 //Display info about the main thread
 System.out.println(Thread.currentThread());
 }
}

2. Creating multiple threads using the Thread class.
class MyThread extends Thread
{
 String message;
 MyThread(String message)
 {
 this.message = message;
 }
 public void run()
 {
 try
 {
 for(int i=1; i<=5; i++)
 {
 System.out.println(message + ”-” + i);
 Thread.sleep(5000); //sleep for 5 seconds
 }
 }
 catch(InterruptedException ie) { }
 }
}
public class MultipleThreadDemo
{
 public static void main(String[] args)
 {

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 39]

 MyThread t1 = new MyThread(“One”);
MyThread t2 = new MyThread(“Two”);
System.out.println(t1);
System.out.println(t2);
t1.start();
t2.start();

 }

}

Lab Assignments

SET A

1. Write a program that create 2 threads – each displaying a message (Pass the message
as a parameter to the constructor). The threads should display the messages continuously
till the user presses ctrl-c. Also display the thread information as it is running.

2. Write a java program to calculate the sum and average of an array of 1000 integers
(generated randomly) using 10 threads. Each thread calculates the sum of 100 integers.
Use these values to calculate average. [Use join method]

Set A Extra programs for practice

1. Define a thread called “PrintText_Thread” for printing text on command prompt for
 n number of times. Create three threads and run them. Pass the text and n as
parameters to the thread constructor. Example:
 i. First thread prints “I am in FY” 10 times
 ii. Second thread prints “I am in SY” 20 times
 iii. Third thread prints “I am in TY” 30 times

SET B

1. Write a program for a simple search engine. Accept a string to be searched. Search for
the string in all text files in the current folder. Use a separate thread for each file. The
result should display the filename, line number where the string is found.

2. Define a thread to move a ball inside a panel vertically. The Ball should be created
when user clicks on the Start Button. Each ball should have a different color and vertical
position (calculated randomly). Note: Suppose user has clicked buttons 5 times then five
balls should be created and move inside the panel. Ensure that ball is moving within the
panel border only.

SET C

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 40]

1. Write a java program to create a class called FileWatcher that can be given several
filenames. The class should start a thread for each file name. If the file exists, the thread
will write a message to the console and then end. If the filw does not exist, the thread will
check for the existence of its file after every 5 seconds till the file gets created.

2.Write a program to simulate traffic signal using threads.

3. Write a program to show how three thread manipulate same stack , two of them are
pushing elements on the stack, while the third one is popping elements off the
stack.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 41]

Assignment 6: Networking

Objectives

 Introduction to the java.net package
 Connection oriented transmission – Stream Socket Class

Reading

You should read the following topics before starting this exercise

1. Networking Basics
2. The java.net package – InetAddress class, URL class, URLConnection class
3. Connection oriented communication –ServerSocket class, Socket class

Ready Reference

Introduction
One of the important features of Java is its networking support. Java has classes that
range from low-level TCP/IP connections to ones that provide instant access to resources
on the World Wide Web. Java supports fundamental networking capabilities through
java.net package.

Networking Basics

Protocol

A protocol is a set of rules and standards for communication. A protocol specifies the
format of data being sent over the Internet, along with how and when it is sent. Three
important protocols used in the Internet are:
1. IP (Internet Protocol): is a network layer protocol that breaks data into small packets
and routes them using IP addresses.
2. TCP (Transmission Control Protocol): This protocol is used for connection-oriented
communication between two applications on two different machines. It is most reliable
and implements a connection as a stream of bytes from source to destination.
3. UDP (User Datagram Protocol): It is a connection less protocol and used typically for
request and reply services. It is less reliable but faster than TCP.

Addressing

1. MAC Address: Each machine is uniquely identified by a physical address, address of
the network interface card. It is 48-bit address represented as 12 hexadecimal
characters:
For Example: 00:09:5B:EC:EE:F2

2. IP Address: It is used to uniquely identify a network and a machine in the network. It
is referred as global addressing scheme. Also called as logical address. Currently used
type of IP addresses is: Ipv4 – 32-bit address and Ipv6 – 128-bit address.
For Example:
Ipv4 – 192.168.16.1 Ipv6 – 0001:0BA0:01E0:D001:0000:0000:D0F0:0010

3. Port Address: It is the address used in the network to identify the application on the
network.

Domain Name Service (DNS)

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 42]

It is very difficult to remember the IP addresses of machines in a network. Instead, we
can identify a machine using a “domain name” which is character based naming
mechanism. Example: www.google.com. The mapping between the domain name and the
IP address is done by a service called DNS.

URL

A URL (Uniform Resource Locator) is a unique identifier for any resource located on the
Internet. The syntax for URL is given as:
<protocol>://<hostname>[:<port>][/<pathname>][/<filename>[#<section>]]

For Example: http://java.sun.com/j2se/1.5.0/download.jsp

Sockets

A socket represents the end-point of the network communication. It provides a simple
read/write interface and hides the implementation details network and transport layer
protocols. It is used to indicate one of the two end-points of a communication link
between two processes. When client wishes to make connection to a server, it will create
a socket at its end of the communication link.
The socket concept was developed in the first networked version of UNIX developed at
the University of California at Berkeley. So sockets are also known as Berkeley Sockets.

Ports
A port number identifies a specific application running in the machine. A port number is a
number in the range 1-65535.
Reserved Ports: TCP/IP protocol reserves port number in the range 1-1023 for the use of
specified standard services, often referred to as “well-known” services.

Client-Server
It is a common term related to networking. A server is a machine that has some resource
that can be shared. A server may also be a proxy server. Proxy server is a machine that
acts as an intermediate between the client and the actual server. It performs a task like
authentications, filtering and buffering of data etc. it communicates with the server on
behalf of the client.
A client is any machine that wants to use the services of a particular server. The server is
a permanently available resource, while the client is free to disconnect after it’s job is
done.

The java.net Package
The java.net package provides classes and interfaces for implementing network
applications such as sockets, network addresses, Uniform Resource Locators (URLs) etc.
some important interfaces, classes and exceptions are :

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 43]

InetAddress Class
This class is used to represent numerical IP addresses and domain name for that address
i.e. it supports both numeric IP address and hostnames. There are no public constructors
for InetAddress class. Instead, there are static methods that return InetAddress instances.
Such methods are called as factory methods.

1. static InetAddress getLocalHost(): represents the IP address of the local host.
2. static InetAddress getByName(String hostname): represents the IP address of the

host name passed to it. hostName can be “www.google.com”, or hostname can be
“130.95.72.134”.

3. static InetAddress[] getAllByName(String hostname): represents an array of IP
addresses of the specified host name.

All of these methods throw UnknownHostException.
Some of the instance methods of the InetAddress class are:

1. byte[] getAddress(): returns the raw IP address of the InetAddress object.
2. String getHostAddress(): returns the IP address string.
3. String getHostName(): Gets the host name for the IP address.

URL Class
As the name suggests, it provides a uniform way to locate resources on the web. Every

browser uses them to identify information on the web. The URL class provides a simple
API to access information across net using URLs.
The class has the following constructors:
1. URL(String url_str): Creates a URL object based on the string parameter. If the

URL cannot be correctly parsed, a MalformedURLException will be thrown.
2. URL(String protocol, String host, String path): Creates a URL object with the

specified protocol, host and path.
3. URL(String protocol, String host, int port, String path): Creates a URL object

with the specified protocol, host, port and file path.
4. URL(URL urlObj, String urlSpecifier): Allows you to use an existing URL as a

reference context and then create a new URL from that context.

Some important methods are given below:
Method Description

URLConnection openConnection() This method establishes a connection and returns a stream

Object getContent() This method makes a connection and reads the contents

String getFile() This method returns the filename part of the URL.

String getHost() This method returns only the host name part from the URL.

String getPort() This method returns the port number part from the URL. This is
an optional component and returns –1 if not present.

String getProtocol() This method returns the name of the protocol used in URL.

String getRef() This method returns the anchor reference part from the URL.

int equals(Object) This method compares whether two URL objects represents the
same resource.

InputStream openStream() This method establishes a connection and returns a stream for
reading it.

URLConnection Class
This class is useful to actually connect to a website or resource on a network and get all
the details of the website. Using the openConnection() method, we should establish a
contact with the site on Internet. Method returns URLConnection object. Then using

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 44]

URLConnection class methods, we can display all the details of the website and also
content of the webpage whose name is given in URL.

Some important methods are:
Method Description

void connect() Establishes a connection between the application and the resource

Object getContent() Reads the contents of the resource

int getContentLength() Returns the value of the “content-length” header field, if such a field
exists. Returns –1 if no content-length field was specified.

String getContentType() Returns the value of the “content-type” header field, if such a field
exists. Returns null if no content-type field was specified.

long getExpiration() Returns the value of the “Expires” header field, expressed as the
number of seconds since January 1, 1970 GMT. If no such a header
field was specified, a value of zero will be returned.

InputStream getInputStream() Returns an InputStream object that reads the contents of the resource
pointed to by the URLConnection

OutputStream
getOutputStream()

Returns an OutputStream object that writes to the remote connection

URL getURL() Returns a URL object representing the location of the resource pointed
by the URL connection

long getDate() Returns the value of the “Date” header field, expressed as the number
of seconds since January 1, 1970 GMT. Returns 0 if not specified.

long getLastModified() Returns the date of the “Last-modified” header field, expressed as the
number of seconds since January 1 1970 GMT. Returns 0 if not
specified.

Connection Oriented Communication
Using Socket Java performs the network communication. Sockets enables to transfer data
through certain port. Socket class of Java makes it easy to write the socket programs.
Sockets are broken into two types:
1. Datagram sockets (UDP Socket)
Java uses java.net.DatagramSocket class to create datagram socket. The
java.net.DatagramPacket represents a datagram.

2. Stream Socket (TCP Socket)
Java uses java.net.Socket class to create stream socket for client and
java.net.ServerSocket for server.
ServerSocket Class
This class is used to create a server that listens for incoming connections from clients. It
is possible for client to connect with the server when server socket binds itself to a
specific port. The various constructors of the ServerSocket class are:
1. ServerSocket(int port): binds the server socket to the specified port number. If 0 is

passed, any free port will be used. However, clients will be unable to access the
service unless notified the port number.

2. ServerSocket(int port, int numberOfClients): Binds the server socket to the
specified port number and allocates sufficient space to the queue to support the
specified number of client sockets.

3. ServerSocket(int port, int numberOfClients, InetAddress address): Binds the
server socket to the specified port number and allocates sufficient space to the queue
to support the specified number of client sockets and the IP address to which this
socket binds.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 45]

The various methods of this class are:
Method Description

accept() Listens for socket connection. This is a blocking I/O operation, and will
not return until a connection is made. When a connection is established
a Socket object will be returned.

getLocalSocketAddresss() Returns local socket information.

bind() Binds a connection to destination.

close() Closes the connection.

getChannel() Returns channel for connection.

getInetAddress() Returns address of connection.

getLocalPort() Returns local port used for connection.

isBound() Checks whether socket is bound.

isClosed() Checks whether socket is closed.

toString() Converts server socket to string.

Socket Class
This class is used to represents a TCP client socket, which connects to a server socket and

initiate protocol exchanges. The various constructors of this class are:

1. Socket(InetAddress address, int port): creates a socket connected to the specified

IP address and port. Can throw an IOException.
2. Socket(String host, int port): creates a socket connected to the specified host and

port. Can throw an UnknownHostException or an IOException.

The various methods of this class are:
Method Description

getLocalSocketAddresss() Returns local socket information.

bind() Binds a connection to destination.

close() Closes the connection.

connect() Makes connection to destination

getChannel() Returns channel for connection.

getInetAddress() Returns address of connection.

getLocalPort() Returns local port used for connection.

getInputStream() Returns input stream for connection.

getKeepAlive() Returns indication of keep alive option enabled.

getLocalAddress() Returns local address

getOutputStream() Returns output stream for connection.

getPort() Returns remote used for connection.

getRemoteSocketAddress() Returns remote socket information.

isBound() Checks whether socket is bound.

isClosed() Checks whether socket is closed.

isConnected() Checks whether socket is connected.

toString() Converts server socket to string.

Self Activity

1. Sample program to find IP address of a web-site (Internet connection required)
/* Program to find the IPAddress of a website*/

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 46]

import java.io.*;
import java.net.*;
class AddressDemo
{
 public static void main(String args[]) throws IOException
 {
 BufferedReader br=new BufferedReader(new
 InputStreamReader(System.in));
 System.out.print(“Enter a website name: ”);
 String site=br.readLine();
 try
 {
 InetAddress ip=InetAddress.getByName(site);
 System.out.print(“The IP address is: ” + ip);
 }
 catch(UnknownHostException ue)
 {
 System.out.println(“WebSite not found”);
 }
 }
}

2. Sample program for client-server communication
/* Program to display socket information on client machine*/
import java.net.*;
import java.io.*;
public class Server
{
 public static void main(String args[])throws UnknownHostException ,
IOException
 {
 ServerSocket ss = new ServerSocket(4444);
 System.out.println("Server Started");
 Socket s = ss.accept();
 System.out.println("Connected to client");

 }
}

public class Client
{
 public static void main(String args[]) throws UnknownHostException,
IOException
 {
 Socket s = new Socket ("localhost", 4444);
 System.out.println (s.getInetAddress());
 System.out.println (s.getPort());
 System.out.println (s.getLocalPort());
 s.close();
 }
}

Lab Assignments

SET A

1. Write a client-server program which displays the server machine’s date and time on
the client machine.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 47]

2. Write a program which sends the name of a text file from the client to server and
displays the contents of the file on the client machine. If the file is not found, display an
error message.

SET B

1. Write a program to accept a list of file names on the client machine and check how
many exist on the server. Display appropriate messages on the client side.

2. Write a server program which echoes messages sent by the client. The process
continues till the client types “END”.

SET C
1. Write a program for a simple GUI based chat application between client and server.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

