
Savitribai Phule Pune University

System Programming &
Operating System

T. Y. B. Sc. (Computer Science)

CS -347 SEMESTER III

Name __

College Name __

Roll No. ______________________ Division _____________________

Academic Year ____________

1

Prepared By

Dr. Shailaja C. Shirwaikar

Prof. Nitin Patil

Reviewed By

Prof. Manisha Bharambe

Prof. Shubhangi Page

Prof. Jeevan Limaye

Preface

System programming and Operating systems course is as important component of any
computer related course syllabi as much as System programs and Operating system are
important to any computing system. The lab work designed for this course not only enhances
the understanding of the subject but is a great programming experience. Writing simple toy level
system programs and operating system components gives student a first hand experience in
developing utility programs from scratch. This Lab Book supplements the text books and
classroom teaching of System Programming and Operating System. The intention is to bring
uniformity in conducting the lab sessions across various affiliated colleges. The assignments are
designed so that the theory concepts in the syllabus are broadly covered. There is scope for
improvement and additions and deletions can be carried out as the Lab book is always going to
remain in digital form and available on the Department of Computer Science, Savitribai Phule
Pune, website. I am indebted to all the reviewers of the book as their valuable suggestions have
improved the book contents. We are all indebted to Dr. Vilas Kharat, Chairman, Board of studies
in Computer Science for continuous encouragement, support and guidance.

Dr. Shailaja C. Shirwaikar

Member, Board Of Studies, Computer Science

Savitribai Phule Pune University

2

Table of contents

Introduction ... 4
Assignment 1 ...

Line Editor

7

Assignment 2 ...

SMAC0 Simulator

12

Assignment 3 ...

Assembler

19

Assignment 4 ...

Macro Processor

25

Assignment 5 ...

DFA driver

30

Assignment 6 ...

Development Utilities

34

3

Introduction

1. About the work book

This workbook is intended to be used by T. Y. B. Sc (Computer Science) students for the Lab
course in System Programming course in semester III and Operating system course in
Semester IV.

System programming is the activity of designing and implementing System software. System
Software consists of a variety of programs that assist in the use of a computer system.
Operating System is a system software that takes the responsibility, on behalf of users, of
managing and protecting the hardware. It provides an interface to the users so that their
software programs can be executed easily and efficiently. Apart from Operating system, System
software comprises of a large set of software mainly software processors and software tools.

Software processors such as editors, assemblers, Compilers etc and Operating system
components such as shell, kernel etc. were some of the first software programs to get
developed and their developers faced problem situations and came up with appropriate design
strategies while implementing solutions to them. This course is intended to give an hands on
experience on understanding these design principles, choosing appropriate data structures and
choosing appropriate control structures for implementing wide range of algorithms.

This development experience will not only make you understand system programming and
Operating system concepts but will equip you with design and implementation tricks that you will
be able to use when you design your own software systems.

The objectives of this book are

1) Defining clearly the scope of the course

2) Bringing uniformity in the way the course is conducted across different colleges

3) Continuous assessment of the course

4) Bring in variation and variety in the experiments carried out by different students in a
batch

5) Providing ready reference for students while working in the lab

6) Catering to the need of slow paced as well as fast paced learners

2. How to use this workbook

The workbook is divided into two sections. Section I is related to assignments in System Pro-
gramming and Section II relates to assignments in Operating System. Both are to be implement-
ed in C programming language in Linux environment. Printouts of completed assignments are
not mandatory.

4

2.1 Instructions to the students

Please read the following instructions carefully and follow them.

1) Students are expected to carry this book every time they come to the lab for computer
science practicals.

2) Students should prepare oneself before hand for the Assignment by reading the relevant
material.

3) Instructor specify which problems to solve in the lab during the allotted slot and student
should complete them and get verified by the instructor. However student should spend
additional hours in Lab and at home to cover as many problems as possible given in this work
book.

4) Students will be assessed for each exercise on a scale from 0 to 5
 i) Not done 0
 ii) Incomplete 1
 iii) Late Complete 2
 iv) Needs improvement 3
 v) Complete 4
 vi) Well Done 5

2.2. Instruction to the Instructors

1) Explain the assignment and related concepts in around ten minutes using white board if
required or by demonstrating the software.

2) Make available to students digital copies of text files provided with the book as per the
requirement of Assignment,

3) Make sure that students follow the instruction as given above.

4) You should evaluate each slot of assignment carried out by a student on a scale of 5 as
specified above by ticking appropriate box.

5) The value should also be entered on assignment completion page of the respective Lab
course.

2.3. Instructions to the Lab administrator

You have to ensure appropriate hardware and software is made available to each student.

The operating system and software requirements on server side and also client side are as
given below:

1) Server and Client Side - (Operating System) Fedora Core Linux

2) Server side and Client Side - editor and GCC compiler

5

Assignment Completion Sheet

Lab Course I

Section I – System Programming

Sr. No Assignment Name Marks (out of 5) Signature

1 Line Editor Slot 1

Slot 2

2 SMAC0 Simulator Slot 1

Slot 2

Slot 3

3 Assembler Slot 1

Slot 2

Slot 3

4 Macro Processor Slot 1

Slot 2

Slot 3

5 DFA Driver Slot 1

Total (out of 60)

Total (Out of 10)

6 Development Utilities

6

Assignment 1 : Line Editor

Software Description – Editors are used to create digital copies of source program. The main
functions supported by an editor is editing, viewing and navigating through the text. A line editor
limits all operations to a line of text. The line is indicated positionally by giving line number i.e its
serial number in the text or contextually by specifying a context which uniquely identifies the
position.

The file to be edited is taken as command line argument. An empty file is opened for editing if
no argument is supplied.

The editor has two modes

In command mode it displays ‘?’ as prompt and accepts single-line commands. If ‘i’ for insert or
‘a’ for append command is given, it goes into input mode and accepts lines as text. When a line
containing a single ‘.’ is given it goes back to command mode.

The program at the start displays ‘lines :’ followed by number of lines(0 if file is empty or not
specified) and goes into command mode.

The Command format is a single character indicating the action followed by three optional
integers separated by spaces. The character and intended actions are given in the table 1.

The second parameter n1 and the third parameter n2 specify the range of lines and the
command is valid if 1 <= n1 <= n2 <= total lines in the file being edited. The default value for n1
is 1 and the default value for n2 is n1. For example a command ‘ p 3 4 ‘ will print lines starting
from line no 3 to line no 4, a command ‘ p 3’ will print line 3 just a ‘ p’ command will print the
first line. If n1 or n2 is greater than the total lines in the file then n1 or n2 is set to total lines in
the file so that command ‘p 1 1000’ will print the file till the end if total lines in file are < 1000.

Command
Character

Intended action

p print or display
i Insert
a Append
d Delete
m Move
c Copy
f Find
s Save
h Help
q Quit

Table 1: character and corresponding Action
The second parameter and fourth parameter depending on the command, indicate the position
of action. For example the command ‘i 5’ indicates that the lines entered are to be inserted from
the 5th position that is fifth line onwards while the command ‘m 2 4 5’ indicate that the lines
ranging from 2 to 4 should be moved to the 5th position.

7

Data Structure Design - Linked list of lines is the appropriate data structure for edit buffer that
hold the lines to be edited, as lines are to be inserted, deleted, moved or copied. A singly linked
list with a dummy header node can be used so that insertion deletion becomes easy.

Data Structure ‘C’ code
typedef struct editbuff
{
 char *line; // character string
 struct editbuff *next; // pointer to next
line
} List * head, *last;

Control structure – The design is modular. The main module performs necessary
initializations, optionally reads text from file and starts a command loop which will process each
of the possible commands. The structure diagram is as follows.

Procedural Design – The following table explains the input, algorithm and provides some
implementation hints

Procedure Description Programming Hints
Editor(Main) Input – optionally the filename main(int argc, char *argv[])

Perform initializations
Read from the file optionally
Count and display the line count
Start the command loop

if(argc >1) { readbuff(head, argv[1]);
printf(“ Lines : %d”, lines(head));

Initializations Initializing the linked list head = (List *) malloc (sizeof (List *));
head->next=NULL;
last=head;

Read text(file) Input - list header and file name void readbuff(List *head, char *filename)
Open the file in read mode
Initially last points to head
while file not the end of file
read a line from the file
create a new node by allocating memory
Allocate memory to string
copy the line
Attach the newnode to last
Let last point to newnode

If((fp=fopen(filename, “r+”))!=NULL)
{ last =head;
while(!feof(fp)) {
 if(!fgets(str,80,fp))break;
 temp = ….
 temp->line=(char malloc(strlen(str));
 strcpy(temp->line,str);
 last->next=temp;
 last=temp; }

Count line Input – linked list header
Output – no of lines

int lines(List *head)

8

Editor(main)

Initializations Read Text Count lines Command loop

Print Delete Copy MoveAppend Insert Save helpfind

head Line 1 last

Start from the first node
Traverse the list and increment the count

temp=head->next;
while(temp !=NULL) { }

Command loop Start the loop
Prompt
Read the command
Separate the parameters

Branch depending on the command
character

Exit the program on quit command

while(1){
printf("\n?");
fgets(str,80,stdin);
n=sscanf(str,"%c%d%d%d",
&c,&n1,&n2,&n3);
switch(c)
{ case 'p':
……………………………..
 case 'q': exit(0);
 default : printf("wrong command");
break;
} }

Print Input - list and two integer parameters n1,n2 void eprint(List *head, int n1, int n2)
validate n1 , n2 and set default values
Skip n1-1 lines

Print lines from n1 to n2
Line no : followed by line

for(line=1, temp=head->next ; line<n1;
line++) temp=temp->next;
for(…) { printf("\nlineno %d :%s" ,line,
temp->line)

Insert Input - list and integer parameter n1
indicating position
Skip n1 lines using two pointers back
following the current
Start a loop
Read a line
Break if it consists of a single dot
Store the line in a newnode
Attach it next to back
Let back point to new node

for(..){ back=curr; curr=curr->next;}

if (!strcmp(str, ".\n")) break;

Append Input – list
Move to the last line using two pointers back
following current
Attach lines till one with a single dot

Delete Input – list and integer parameters n1 n2
Validate n1, n2 and set default values
Skip n1 -1 lines using back and curr
Skip n2 lines using back1 and curr1
Attach curr1 to back back ->next =curr1

Move Input – list and integers n1, n2 and n3
Validate the parameters
Skip n1-1 line with two pointers back and
curr, skip n2 lines with two pointers back1
and curr1 and skip n3 lines with two
pointers back2 and curr2
Modify the pointers
See Fig 1

 back2->next=curr;
 back1->next=curr2;
 back->next=curr1;

Copy Input – list and integers n1, n2 and n3
Validate the parameters
Skip n1-1 line with two pointers back and
curr, skip n3 lines with two pointers back1
and curr1
Copy n2 lines Starting from curr each line in
a new node and attach after back1

Save Input – list

9

Prompt “Filename :” to accept filename if it
is empty If given file name is already exists
check whether to overwrite this existing file
contents (Yes/ No). If Yes then
Open the file in write mode
Put every line from the list into the file

if((fp=fopen(name, "w"))!=NULL) {
while(temp != NULL) { fputs(temp-
>line,fp); ……}

Find Input – list and range given by n1 and n2
Prompt “Pattern : “ to accept the pattern
Skip n1=1 lines
Traverse up to n2 lines
Print the line If it contains the pattern

Help No parameters
Display the list of commands with syntax
description and examples

Slot 1

i) Answer the following questions after carefully reading the description and program
structure.

a) How main function is declared in case of command line program?

b) What are the two modes of the editor?
__

c) What data structure is appropriate for the edit buffer? Why?
__

d) What command will print all lines in the file?

e) What command will print nth line? What will print last line?

f) What will command ‘d 5’ will do? What effect ‘d’ command will have?
__

ii) Partially implement a command line program for a line editor. Implement the following
functionalities

a) The program accepts the filename and prints the number of lines in the file and prompts
for the command

10

Line 1 lastback curr

…..

back1

…..

back2

…..

curr1 curr2

b) Implement the print command

c) Implement the insert command

d) Implement the save command

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2

i) Extend the line editor

a) Implement the delete command

b) Implement the move command

c) Implement the copy command

d) Implement the find command

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 3 (Optional)

i) Implement the help command

ii) Change the data structure to a doubly linked list. The print command ‘p m n ‘ is now valid if m
> n and also if m < n, wherein it prints lines backwards from m to n. Modify the print command
accordingly

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

11

Assignment 2 : SMAC0 simulator

Software Description – A simple instruction Computer(SMAC0) is a hypothetical machine with a
small but effective instruction set that can be used to illustrate the design of simple software
processors involved in development of programs such as Assembler, Macro processor etc.
The machine will incorporate the most commonly encountered hardware features and concepts,
while avoiding irrelevant complexities.

 A simulator program is required that simulates the function of simple instruction computer such
as fetching an instruction, decoding and executing it.

The hypothetical Simple machine (SMAC0) has following features.

Memory – Memory consist of 6 digit words (decimal). Total size of memory is 1000 words (103)
indicates the address size is 3 digits (address ranges from 0 to 999).

Registers – There are in all six registers four general purpose registers AREG, BREG, CREG
and DREG numbered 1,2,3 and 4.

A program counter (PC) storing the address of the next instruction to be fetched and a status
register storing condition codes. There are SIX condition codes LT, LE, EQ, GT , GE and ANY
numbered 0,1,2,3,4 and 5. Each bit in the status register can be set to 1

Data Format – Supports only six digit integer data stored in decimal form.

Instruction Format – It has single instruction format. Each instruction is of six digit length. The
opcode, register operand and memory operand occupy 2, 1 and 3 digits in that order

Instruction Set

Opcode Mnemonic Instruction Operands
00 STOP Stop or Halt execution Operands unused
01 ADD Add memory operand to register operand Register and

memory operand
02 SUB Subtract memory operand from register

operand
Register and
memory operand

03 MULT Multiply memory operand to register
operand

Register and
memory operand

08 DIV Divide register operand by memory
operand

Register and
memory operand

04 MOVER Move memory operand contents to
register operand

Register and
memory operand

12

opcode Register
operand

Memory
operand

05 MOVEM Move register operand contents to
memory

Register and
memory operand

06 COMP Compare register and memory operands
to set condition code appropriately

Register and
memory operand

07 BC Branch to second operand depending on
condition code specified as first operand

Register and
memory operand

09 READ Read into memory operand Only memory
operand

10 PRINT Print contents of memory Operand Only memory
operand

Condition code Mnemonic Description
0 LT Less than
1 LE Less than or equal to
2 EQ Equal to
3 GT Greater than
4 GE Greater than or equal to
5 ANY Unconditional

It should be possible to load program from file into memory at specified location. File contains
program as sequence of lines, each line containing address followed by content indicating the
instruction to be stored at that address. The file ends with –1 followed by starting address
indicating physical end of file.

Simple program to add two numbers
address Content Description
100 090107 Read into 107th memory address
101 090108 Read into 108th memory address
102 041107 Move contents of 107th memory address to register 1
103 011108 Add contents of 108th memory address to register 1
104 051109 Move contents of register 1 to memory address 109
105 100109 Output contents of 109th memory address
106 000000 Halt – logical end of the program
107 0 Address to be used for first integer
108 0 Address to be used for second integer
109 0 Address to be used for result
The above program should be stored in a file sum.sm as follows

100 90107
101 90108
102 41107
103 11108
104 51109
105 100109
106 0
-1 100

13

Similarily the program for printing factorial of the number read is given below. Store it in a file
fact.sm.

100 090113
101 041113
102 042112
103 061112
104 071109
105 032113
106 021112
107 051113
108 075103
109 052114
110 100114
111 0
112 1
-1 100

The simulator program should be menu driven supporting.

Load – loading the program into memory from the file after accepting filename.

Print – print the content of loaded program

Accept – accept the program as string of address content pairs

Run – execute the program

Trace – execute statement by statement displaying contents of all the registers

Quit – quits the program

The menu should look like

1: Load
2: Print
3: Accept
4: Run
5: Trace
6: Quit
Choose option by specifying corresponding integer

Data Structure Design – The SMAC0 machine has memory and a set of registers. Appropriate
data structures need to be chosen to represent each one of themor. Simulator program also
need to store the last valid address in the physical file.

Component Description ‘C’ code
Memory An array of 1000 words each can

store an integer
int mem[1000];

14

Program Counter An integer indicating the address
of instruction

int pc;

General Purpose registers Four general purpose registers
numbered 1, 2, 3 and 4

int reg[4];

Condition Code register A single integer with each bit
representing a condition code
or
An array of six registers each
storing condition code separately

int cc;

int cc[6];

Last address An integer indicating last valid
address in physical file

int lc;

Control structure – The design is modular. The main module provides the menu options and
allows one to choose the appropriate option.

Procedural Design – The following table explains the input , algorithm and provides some
implementation hints

Procedure Description Programming Hints
Simulator(main) In a loop

Print options
Read an option
Branch depending on option

do {
printoptions();
scanf(“%d”,&option);
switch(option){case 1: ……
} while(option!=6)

Load Accept the filename
Open the file for reading
Read from the file

fscanf(fp, "%d%d", &address, &content);
if (address==-1) pc= content;
else { lc = address; mem[address]=content;

Print Print from contents from pc to lc for(i=pc ; i<=lc; i++)
Run Input – start address void execute(int pc)

15

Simulator(Main)

Load Print Run Accept

Fetch Command LoopDecode

Trace

Fetch the instruction
Decode the instruction

While opcode is not zero
Depending on opcode take
action
If opcode is 1 add memory
operand to register
…
If opcode is 4 move contents of
memory operand to register
operand
…..
If opcode is 6 compare mem
operand with register operand
and set the condition code

If opcode is 7 take the jump to
memory operand if condition
code matches
If opcode is 9 read into memory
operand ……

mem[pc] // contains the instruction
opcode=mem[pc]/10000;
// separate register and memory operand

Switch(opcde){
case 1: reg[regop]+=mem[memop];pc++;break;

case 4 : reg[regop]=mem[operand];pc++;break;

case 6: for(i=0;i<6;i++) cc[i]=0;
 if (reg[regop]< mem[operand]) cc[0]=1;
…
 if (reg[regop]>= mem[operand]) cc[4]=1;
 pc++; break;

if((cc[regop]==1)||(regop==5))
pc=operand; else pc++; break;

printf(" give the contents");
scanf("%d", &mem[operand]); pc++; break;

Accept Accept address and content till
address equals -1 and store
them in memory
Optionally allow saving them in a
file

Trace Set the trace flag
Call modified Run function that
outputs contents of all registers
when the trace flag is on

Slot 1

 i) Answer the following questions after carefully reading the description and program structure.

a) What is the size of memory in Hypothetical Simple Instruction Computer(SMAC0)? How

memory will be represented in simulation program?

 __

b) How many registers are there in SMAC0? How registers are represented in simulation

program?

__

c) From the contents of the memory at pc, how will you separate opcode, register operand

and memory operand?

16

 ii) Implement a menu driven simulator for hypothetical Simple Instruction Computer that
provides the following functionalities

a) Load - Loading of the program from file into memory

b) Print - Printing the program loaded in memory

c) Run - Executing the loaded program

The machine has the basic instruction set comprising of add, mover, movem, read, print and hlt
commands as given in Table 1. Create a file sum.sm containing the machine code for sum of
two numbers. Test the program using the machine code programs sum.sm.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2

i) Extend the program by adding the following functionalities

a) Accepting of the program from the user and storing it in file

b) Trace option that executes the program statement by statement displaying the
contents of the registers

c) Extend the instruction set to include sub, mult, div, comp and bc instruction

ii) Create a file fact.sm containing the machine code for printing factorial of number read.Test
the program using the machine code program fact.sm.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

17

Slot 3 i) Extend the instruction set further to include the following

Opcode Mnemonic Instruction Operands
11 SWAP Swap the contents of memory and

register operand
Both register and
memory operand

12 INCR Increment the contents of register
operand

Only register
operand

13 DECR Decrement the contents of register
operand

Only register
operand

14 INCM Increment the contents of memory
operand

Only memory
operand

15 DECM Decrement the contents of memory
operand

Only memory
operand

16 ADDM Add the contents of register
operand to memory operand

Both the operands

17 SUBM Subtract the contents of register
operand from memory operand

Both the operands

18 MULTM Multiply the contents of memory
operand by register operand

Both the operands

19 DIVM Divide the contents of memory
operand by register operand

Both the operands

20 PRINTR Print the contents of register
operand

Only register
operand

21 READR Read into the register operand Only register
operand

22 ZEROR Initialize register operand to zero Only register
operand

23 ONER Initialize register Operand to One Only register
operand

ii) Test after converting the following programs to machine code

Sum of two numbers Maximum of two numbers Factorial of number
READR AREG
READ A
ADD AREG A
PRINTR AREG
STOP

 READR AREG
 READ A
 COMP AREG A
 BC GE NEXT
 SWAP AREG A
NEXT PRINTR AREG
 STOP

 ONER BREG
 ONER AREG
 READ A
 AGAIN COMP AREG A
 BC GE OUT
 MULT BREG A
 DECM A
 BC ANY AGAIN
OUT PRINTR BREG
 STOP

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

18

Signature of the Instructor Date of Completion ____/____/______

19

Assignment 3 : Assembler

Software Description – An Assembler is a software processor that takes as input an assembly
language program and translates it into machine code if it is error free otherwise provides a list
of errors. We will design an assembler for the hypothetical simple Instruction computer and its
assembly language.

Apart from imperative statements an assembly language contains Assembler directives and
declaration statements. The assembler should be able to handle programs containing
assembler directives ‘START’ and ‘END’, declaration statements ‘DS’ and ‘DC’ and the
imperative statements.

The Assembler will have two passes. In the first pass it will generate intermediate code and
create symbol table. In the second pass intermediate code will be converted to machine code

Data Structure Design – A design of assembler requires several tables such as symbol table,
mnemonic table, intermediate code table and error table. Each symbol encountered in source
program is added to symbol table Each symbol table entry stores symbol name, address and
two flags indicating whether symbol has been used and whether it is defined. When Symbol
appears as label, it gets defined and corresponding address gets added to the table. It is used
when it appears as an operand. There are three mnemonic tables one for opcodes, the other for
general purpose registers and the third for the condition codes. The intermediate code table
stores intermediate code for each source line. Each table entry stores address, opcode, register
operand number, character which can be ‘S’ or ‘C’ indicating Symbol or constant and the value
which is index of symbol table entry or actual value in case of constant. The error table stores
line number and type of error indicated by error number while error message table contains
error messages for each error number. Apart from tables, the assembler uses a pointer ‘lc’ to
the current line being processed. The implements of tables can be static or dynamic.

Component Description ‘C’ code
Mnemonic
table

Table that stores valid
mnemonics and also
the index matches the
opcode or imperative
statements

*mne[15]={"STOP","ADD",………"DC","START","END"}

Register
table

Table stores register
names and index
indicates the register
number

char *reg[4]={"AREG", "BREG","CREG","DREG"};

Condition
Code table

Table stores condition
names and index
indicates the condition
code

char *cc[6]={"LT","LE","EQ","GT","GE", "ANY"};

20

Symbol
table

Each entry in symbol
table contains the
name, address and
flags indicating whether
the symbol is used and
defined

struct symtab {
char symbol[20];
int add;
int used;
int defined;
}sym[50];

Intermediat
e code table

Each table entry stores
address, opcode,
register operand
number, character
which can be ‘S’ or ‘C’
indicating Symbol or
constant and the value

struct ictab{
int address;
int opcode;
int regop;
char optype;
int value;
}ic[50];

Error table Each entry contains line
number and the error
number indicating type
of error

struct errtab{
int lineno;
int errno;
}err[50];

Error
message
table

This table is used for
giving different error
messages

char *errmsg[6]={“used but not defined”, “invalid
opcode”,”wrong statement format”,..};

Control structure – The assembler is two pass so the main module calls Pass1 followed by
Pass2 if there are no errors. The file to be assembled is provided as command line argument.in
pass one, every line in source program is separated into label, opcode, register and memory
operand. In some cases label is empty while in some cases the operands. Each token is
validated so also the statement format and appropriate error is added to error table. The
separated tokens are then processed

If label is present it is added to symbol table with appropriate attribute values so also the
memory operands. The intermediate code generated for every line is added to Intermediate

21

code table.

Procedural Design – The following table explains the input , algorithm and implementation
hints for some of the procedures

Procedure Description Programming Hints
Assembler(main) Input – source file as command

line argument
Apply Passone to source program
If no errors then apply Passtwo

If(argc==2) passone(argv[1]);

Passone Open the file
In a loop
Read a source program line
Separate tokens
Process tokens

Passtwo In a loop
Get an entry from IC
Refer symbol table

22

Assembler(Main)

Initialization Pass One Pass Two

Separate tokens GenerateProcess tokens

Display
Symtab

Display
error

Display
IC

Check
opcode

Check
regop

Check
CC

Add
error

Add
Symbol

Add
IC

Separate tokens Split the input string into strings
Check if number of tokens are 4
If mnemonic is valid
If opcode requires two operands
check validity of condition code
check validity of register operand
copy label, opcode and operands
if invalid add error to error table
Check if number of tokens are 3
Check if mnemonic requires two
operands, validate and copy
Check if number of tokens are 2
handle different possibilities
Check if number of tokens are 1
It can be END or STOP

n=sscanf(str,"%s%s%s%s", s1,s2,s3,s4);
if(n==4)
 { if((c=checkm(s2))!=-1)
 if(c>=1 && c <=8)

 adderror(lno,3);}
if(n==3)

 {if(c >=9 && c <=13)
 If (n==2) {

if(n==1) {

Process tokens if label is present
add label to symbol table as
defined along with lc
if mnemonic is start
 change lc
if mnemonic is DS
 modify symbol table and change
lc
if mnemonic is DC
 add appropriate entry IC table
if imperative opcode
 add operand2 to symbol table as
used if not present
add appropriate entry to IC table

if(!strcmp(label,""))

if (opcode==12) lc+=atoi(op2);
if (opcode ==13)

Check opcode Check if the mnemonic is present
and return the index in the table as
opcode else return -1

int checkm(char * str)
{ int i;
for(i=0; i<15; i++)
if(!strcmp(str,mne[i])) return i;
return -1;
}

Add Sym Check if symbol is present and
update or add the symbol to
symbol table

Display Error table Display logged errors and
corresponding error messages

Slot 1 i) Answer the following questions after carefully reading the description and program
structure.

a) What data structures are used by the first pass of assembler?

b) How mnemonic table will be implemented in C?

23

c) Give the declaration for Symbol table.

 ii) Implement a Two pass Assembler for hypothetical simple Instruction Computer and its
simple assembly language that includes Assembler directives ”START” and “END”, the
declarative statements “DS” and “DC” and imperative statements with mnemonics “STOP” to “
“PRINT”

a) Implement necessary tables statically and write functions for checking, displaying adding
to tables.

b) Store test program given below in a file and write dummy Passone that only prints the
source program lines with line nos

START 300

BEGIN READ NUM

LOOP MOVEM AREG NUM

PRINT NUM

MULT AREG NUM

COMP AREG HUNDRED

BC LT LOOP

STOP

NUM DS 2

HUNDRED DC ‘100’

END BEGIN

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

24

Slot 2

i) Implement Separatetokens

ii) Verify using test program the separation of tokens for each line

iii) Display the error table

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 3

i) Implement process tokens

ii) Display the contents of symbol table, error table and IC table

iii) Implement Pass2

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 4 (Optional)

i) Implement tables using dynamic data structure and modify code accoordingly.

ii) Add ORIGIN as 16th mnemonic and make appropriate changes to separate tokens and
processtokens

iii) Add EQU as 17th mnemonic and make appropriate changes to separate tokens and
processtokens

iv) Define literal table as data structure.

In processtokens check If symbol is a literal (starts with = sign) then add it to literal
table

Write a functions for processing literals and call it at the end of passone

Change passtwo accordingly

25

v) Add LTORG as 18th mnemonic and make appropriate changes to code

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

26

Assignment 4 : Macro Processor

Software Description – An assembly language macro is a facility for extending the set of
operations provided in an assembly language. A programmer can define his own set of macros
only once and can use them many times.

A macro definition consists of a name , a set of formal parameters and a body of code. When a
macro name along with a set of actual parameters is used, it is replaced by body of macro and
it is called macro expansion.

Macro processor is a software that takes as input a program containing macro definitions and
calls and generates an assembly language program which is free of macro definitions and
where macro calls have been properly expanded. Macro processor has two main steps

i) Processing macro definitions ii) macro expansion

In the first step each macro definition is processed to extract information and is stored in well
defined data structures. In macro expansion each macro call is expanded using appropriate
information from the tables.

Data Structure Design – The design of macro processor requires several tables. The first
preprocessing step uses tables such as macro name table, Keyword parameter default value
table, macro definition table, parameter name table. Macro expansion step uses actual
parameter name table, macro name table, Keyword parameter default value table and macro
definition table. Since additions are to be done to all these tables we need pointers indicating
last vacant position in the table.

Component Description ‘C’ code
Macro
name table

It stores the name of the macro and
other information such as no of
positional parameters, keyword
parameters etc.
It is used as a lookup table when a
macro call is identified.It also
contains pointers to all other tables
where relevant information is stored

struct mnttab{ // structure of MNT table
char name[30];
int pp;
int kp;
int kpdptr;
int mdtptr;
}mnt[10];

Parameter
name table

It contains names of formal
parameters including positional and
keyword parameters

char pnt[10][30];
or char **pnt;

keyword
parameter
default
value table

It contains keyword parameters and
their default values

Macro
definition
Table

It contains the model statements of
all macros . They are kept in
partially processed (IC) form so that
expansion is easier

27

Actual
parameter
Table

It contains actual parameters i.e.
values that will replace formal
parameters during the expansion

Pointers to
various
tables

int mdtptr=0; ….

Control structure – The macro processor in first step stores extracted information in tables
when macro definitions are encountered and in second step performs expansion after validating
each macro call.

Procedural Design – The following table explains the input, algorithm and implementation hints
for some of the procedures

Procedure Description Programming Hints
Macro
Processo(main)

Input – source file as command
line argument
Open the file and read line by line
For each macro definition
Extract information from macro
header statement and add to
tables
Store macro definitions statements
in MDT table till mend statement is
reached after replacing parameters
by positional markers.
For each macro call extract name
and actual parameters
Expand after replacing macro
definition statements
corresponding to macro name by
actual parameters

if(!strcmp(str, "macro\n"))

while (strcmp(str,"mend\n"))
 { …
 replace(str, str1)
}

28

Macro processor(main)

Process Macro Definition Macro Call Expansion

Add
PNT

Add
KPDT

Add
MNT

Add
MDT

Check
MNT

String
Cut

Display
MDT

Display
MNT

Display
KPDT

Replace

Process macro
header

Process
Macro body

 Definition

Revert

Extract Extract macro name
Extract all positional parameters
that start with & and add to PNT
table
Extract all keywords that start with
= and add keyword parameters
and default values to KPDT table
Add name, parameter count and
pointers to MNT table

s=strcut(s,mname);

Expand Extract macro name from macro
call
Check if it is present in MNT table
Get mdtptr and kpdptr from table
Prepare actual parameter table
and add default values
Extract and add actual parameters
Appropriately revert positions by
parameters in statements in MDT
table starting from mdtptr till MEND

Replace if parameter is present in macro
body replace it by (P,n) where n is
the parameter position

Revert Replace (P,n) in macro body by
parameter name at nth position in
actual parameter name table

 Slot 1 i) Answer the following questions after carefully reading the description and program
structure.

a) What are the two main tasks of a macro processor?

b) What tables are used by macro processor to store extracted information?

__

__

 ii) Create a file named first.asm containing following macro definitions

29

MACRO
COPY &ONE, &TWO, ®=BREG
MOVER ®, &ONE
MOVEM ®, &TWO
MEND
MACRO
CHANGE &FIRST, &SECOND, ®=AREG, &OP=ADD
MOVER ®, &FIRST
&OP ®, &SECOND
MOVEM ®, &FIRST
MEND

iii) Write a command line macro processor program that takes above file as command line
argument and prints the macro names, and names of parameters.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2

i) Extend the macro processor program

a) Define appropriate data structure for all the tables

b) Write code for extracting information from

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 3

i) Extend first.asm by attaching the code below

30

READ A
COPY A, B
CHANGE A, B, REG=CREG
COPY A, C
CHANGE C, B , OP=SUB, REG=DREG
PRINT A
PRINT B
PRINT C
STOP
A DS 1
B DS 1
C DS 1
END

ii) Extend the macro processor program that also expands the macro calls appropriately to
create the final assembly language program

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 4 (Optional)

i) Implement various tables using dynamic data structures and modify the code accordingly

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

31

Assignment 5 : DFA Driver

Software Description – Finite automata is a mathematical model of a machine with finite number
of internal configurations or states. Input to the machine is from a finite set of symbols that forms
the alphabet denoted by ∑. Machine keeps on changing its state on consuming an input symbol
and the state can be one among the finite set of states denoted by Q. These transitions can be
specified either by giving a transition table or a transition diagram denoted by δ. The machine
always starts in a specific state which is designated as start state and is denoted as q0. There
are some states in Q which are final states or accepting states. The set of Final states is
denoted by F. Thus a Finite automata is characterized by these five components and
mathematically it is a five tuple {Q, ∑, δ, qo, F}.

The language accepted by FA is the set of all strings for which the FA halts in a final state. The
languages accepted by FA are Regular languages. In case of Deterministic FA , the transitions
are uniquely defined on a state and input symbol.

DFA driver is a software that helps to construct a DFA and execute it on a string.

Data Structure – DFA is a five tuple consisting of set of states, alphabet(set of symbols),
transitions, start state and set of final states. We assume that states are numbered from 0 to n-1
and start state is always 0. The alphabet is always a, b, c in alphabetical order. The set of final
states can be defined using an array of 0s and 1s , a 1 indicates that the state is final.
Transitions are defined using transition table which is a two dimensional array. Thus DFA
components are number of states, number of symbols, transition matrix and array of final states.

Component Description ‘C’ code
DFA DFA consists of number of states,

number of symbol, transition table,
start state is assumed by default as
0 and the Boolean array of final
states

struct DFA {
int m; // no of states
int n; //no of symbols
int delta[10][10]// transition table
int final[10];// array of final states
}

Control structure – The DFA driver accepts the DFA for a given language and then it can be
executed on any string. The output is ‘accepted’ if string is in the language or ‘rejected’ if string
is not in the language.

32

DFA Driver(Main)

Accept Display Execute

Procedure Description Programming Hints
DFA Driver (main) Accept the DFA details from user

or initialize DFA
Accept the string
Execute the DFA over the string
and output whether string is
accepted or rejected

Accept Accept the number of states,
number of symbols
Accept transition of every state
over every alphabet
Accept final states
Or
Initialize dfa struct DFA odd={2,2,{ {1,1}, {0,0} },{0,1} };

Display Display DFA as a five tuple with its
transition table

Execute Initialize Current state to start state
For every symbol in the input string
current state is transformed to
transition from current state over
the input symbol
Output accepted if current state is
final and rejected otherwise

Slot 1

i) Answer the following questions after carefully reading the description and program structure.

a) How will you initialize the DFA for the language L={ the set of all strings over {a,b} that
start with a }

b) How will you initialize the DFA for the language L={ the set of all strings over {a,b, c}
that contain substring ‘aa’ }

__

c) How will you initialize the DFA for the language L= ________________________

__

__

d) How will you initialize the DFA for the language L= ________________________

__

__

33

ii) Implement a DFA driver that allows initializing a DFA, display and executes a DFA

iii) Extend DFA driver to accept DFA details from user.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

Slot 2 (optional)

i) Implement a NFA driver that accepts an NFA, converts NFA to DFA and displays the
corresponding DFA

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion ____/____/______

34

